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ABSTRACT

This paper addresses the building of obligor-level hazard rate corporate probabil-
ity of default models for stress testing, departing from the predominant practice in
wholesale credit modeling of constructing segment-level models for this purpose.
We build models based upon varied financial, credit rating, equity market and macro-
economic factors, using an extensive history of large corporate firms sourced from
Moody’s. We develop distance-to-default (DTD) risk factors and design hybrid struc-
tural/Merton reduced-form models as challengers to versions of the models contain-
ing other individual variables. We measure the model risk attributed to various mod-
eling assumptions according to the principle of relative entropy and observe that
the omitted-variable bias with respect to the DTD risk factor, neglect of interaction
effects and incorrect link function specification has the greatest, intermediate and
least impact, respectively. Given the sensitive regulatory uses of these models and
the concerns raised in the industry about the effect of model misspecification on
capital and reserves, our conclusion is that validation methods chosen in the stress
testing context should be capable of testing model assumptions. Our research adds
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to the literature in that it offers state-of-the-art techniques as viable options in the
arsenal of model validators, developers and supervisors seeking to manage model
risk.

Keywords: probability of default (PD); stress testing; Current Expected Credit Loss (CECL);
credit risk; model validation; model risk.

1 INTRODUCTION AND SUMMARY

The importance of stress testing in assessing the credit risk of bank loan portfolios
has grown over time. Currently, these exercises are accepted as the primary means of
supporting capital planning, business strategy and portfolio management decision-
making (Financial Services Authority 2008). Such analysis gives us insight into the
likely magnitude of losses in an extreme but plausible economic environment, condi-
tional on varied drivers of loss. It follows that such activity enables the computation
of unexpected losses that can inform regulatory or economic capital according to
Basel III guidance (Basel Committee on Banking Supervision 2011).

Most recently in this domain, in satisfaction of the Current Expected Credit Losses
(CECL) accounting standards (Financial Accounting Standards Board 2016),1 or in
compliance with the Federal Reserve’s Dodd–Frank Act Stress Test (DFAST) pro-
gram (Board of Governors of the Federal Reserve System 2016),2 we observe that
the predominant types of models used in the industry differ slightly from those used
in the context of the 2007–9 global financial crisis, as their application must meet
particular capital adequacy and accounting requirements that were not previously a
consideration (Global Credit Data 2019).

In this study, we quantify the degree of model risk due to several forms of model
misspecification or violations of model assumptions by utilizing the principle of rel-
ative entropy. This methodology studies the distance of an alternative model to a ref-
erence model according to some suitable loss metric (see Hansen and Sargent 2007;
Glasserman and Xu 2014) and can capture the dimensions of model uncertainty
error beyond parameter estimation error. This framework for measuring model risk
is applied to a CECL stress testing exercise of default risk for a corporate portfolio.
The importance of this application is rooted in the sensitivity of CECL or DFAST
results from the perspective of prudential supervision as well as of accounting policy.
It is observed that third-party reviewers, such as model validators or regulators, often

1 See Jacobs (2015) for a conceptual framework addressing the measurement of model risk and
Jacobs (2020) for the quantification of model risk in the context of a top-down credit model for
CECL.
2 See Jacobs (2019) for an assessment of the accuracy of alternative supervisory methodologies for
DFAST stress testing.
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Quantification of model risk with an application to PD estimation and stress testing 3

question the impact of faulty model assumptions on capital and reserve projections.
We find that omitted-variable bias due to leaving out a critical risk factor has the
most impact, that incorrect specification of the model equation function is of mini-
mal importance and neglected interaction terms among the explanatory variables are
of intermediate influence for the measured model risk in terms of forecast bounds.

To elaborate on this finding, the standard manner in which credit models have
been adapted for stress testing is through the modification of probability of default
(PD) models at the disposal of financial market participants. PD models are designed
to accurately measure an obligor’s ability and willingness to meet future debt obli-
gations over some horizon, and are typically associated with a credit score or rat-
ing. The majority of PD risk rating methodologies or models currently used in the
industry are characterized by a dichotomy of outcomes: point-in-time (PIT) versus
through-the-cycle (TTC). In the so-called PIT rating philosophy such PD models
should incorporate a complete set of borrower-specific and macroeconomic risk fac-
tors that will measure default risk at any point in the economic cycle. In contrast,
according to the TTC rating philosophy, the model should abstract from the state of
the economy or from cyclical effects and measure default risk over a more extended
time horizon that incorporates a variety of macroeconomic states. This TTC orien-
tation implies that ratings derived from the model should show “stability”, wherein
material changes in ratings can be ascribed to fundamental, as opposed to transient,
factors. PIT PD models are typically deployed in loan pricing and early warning
systems, while TTC PD models feature prominently in regulatory capital, credit
underwriting and portfolio management applications.

Note that this distinction prevails in particular for wholesale credit asset classes
(eg, large corporate or middle market commercial and industrial (C&I) loans), where
instead of using PIT PD models directly for stress testing, alternative approaches
that are prevalent in the industry are used. One such common methodology involves
adding sensitivity to macroeconomic variables in the TTC PD models (Global Credit
Data 2019). Such TTC PD models are commonly found in the Basel III framework
or for use in credit underwriting, as previously mentioned. The predominant manner
in which TTC PD models are used in stress testing is through a rating transition
model construct (Gross et al 2020), where the level of modeling is at the rating level
and credit ratings are aggregated for different modeling segments across a bank’s
portfolio.

These considerations point us to an overarching conceptual question regarding
stress testing and how such models are validated. Demonstrating the fitness for pur-
pose of downstream models that are dependent upon upstream credit risk models is
a challenge within the industry. Often, model development teams will find it infea-
sible to test the downstream fitness of upstream models during redevelopment, and
it could be the case that they become subject to overarching validation issues that
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are not resolved until the next redevelopment cycle. This could then involve lags of
multiple years and be costly in terms of enhanced model monitoring requirements. In
the case of wholesale portfolios, in which it is more common to have this disconnect,
this leads to challenges in demonstrating the conceptual soundness of credit risk and
stress testing models to model validators and supervisors (Global Credit Data 2019).
The type of PD models that we investigate in this paper address this issue, as they
are directly applicable to stress testing. To the best of our knowledge, there is no aca-
demic or practitioner literature addressing this issue that is particular to the wholesale
credit asset class, which is where our research presents its main contribution to the
literature.

The position of this research in the academic literature is at the intersection of two
streams of inquiry. First, there are a number of empirical studies that focus on the
factors that determine corporate default and its forecasting (see, for example, Altman
1968, Jarrow and Turnbull 1995 and Duffie and Singleton 1999). At the other end
of the spectrum, there are mainly theoretical studies that focus on modeling frame-
works for either understanding corporate default (see, for example, Merton 1974)
or perspectives on the TTC versus PIT dichotomy (see, for example, Aguais et al
2008). In this paper, we blend these considerations of theory and empirics while also
addressing the previously discussed conceptual validation issue facing practitioners
in stress testing for wholesale portfolios.

This research is further distinguished from the existing literature by its utiliza-
tion of an obligor-level and dynamic modeling framework that considers financial,
credit rating and macroeconomic variables that are time varying.3 We estimate these
models over a history that contains several economic cycles and apply them to a
CECL stress testing exercise. We implement this exercise through the construction
of discrete-time hazard rate models of default, a class of dynamic PD models, by uti-
lizing a data set of corporate ratings and defaults. This methodology has the benefit
of accommodating the discrete character of our data (which are quarterly snapshots),
and while the use of discrete-time survival models appeared previously in the predic-
tion of corporate defaults, prior studies have not incorporated macroeconomic risk
factors or been applied to stress testing (Shumway 2001; Cheng et al 2010). This
is, to the best of our knowledge, the first study to do so. Finally, we employ what
is, compared with other models in this class, a less complex estimation algorithm.
While the computational advantages of our data design approach may not be the pri-
mary benefit of our methodology, given the availability of inexpensive computational
power, they do allow more resource-constrained model developers to perform rapid
prototyping prior to investing in costlier techniques.

3 See Bellotti and Crook (2013) for an application of this methodology in a retail credit context.
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We present an innovation to the literature by introducing a structural Merton model
style distance-to-default (DTD) measure into a stress testing application. Further, we
construct discrete-time hazard rate models of PD, featuring a modeling data design
that allows for a computationally efficient estimation technique, which is of particu-
lar value to modeling practitioners. Extending the literature along another dimension,
the DTD risk factor, derived from equity prices and accounting measures of lever-
age, admits the design of challenger hybrid structural–reduced-form models, which
are compared with the versions of these models containing all the other variables
under consideration except for the DTD. It is demonstrated that the challenger mod-
els result in improved model performance (ie, measures of discriminatory power
and predictive-level PD accuracy) and have a comparable quality of CECL scenario
forecasts and that introduction of the structural DTD risk factor does not result in the
other variables being rendered statistically insignificant.

The remainder of this study proceeds as follows. Section 2 constitutes a review
of the relevant literature, such as studies on hazard rate modeling to predict binary
outcomes, either the probability of occurrence or the time to the event, and we spec-
ify the discrete-time version within this class of models that we employ in the PD
context. Section 3 is an outline of the methodology for our modeling exercise, where
we discuss the general framework and its different subclasses, leading to the par-
ticular technique employed in this research. In Section 4 we present the empirical
results of this study, including descriptive statistics of the modeling data set, estima-
tion results, model performance metrics and the exercise in which we quantify model
risk. Finally, in Section 5 we summarize our study and discuss future directions for
this line of inquiry.

2 REVIEW OF THE LITERATURE

Rating or scorecard models have historically focused on estimating the PD, as
opposed to the severity of losses, in the event of default or loss given default.
Default is usually defined as a “failure”, such as bankruptcy, liquidation, failure to
pay, deemed unlikely to pay, etc. This construct does not consider downgrades or
upgrades in credit ratings, as considered in mark-to-market (MTM) models of credit
risk. These default mode (DM) credit risk models project credit losses only due to
events of default, unlike MTM models that consider as credit events all credit quality
changes. Among such DM models we can identify three broad categories: expert-
based systems (eg, artificial neural networks), risk rating methodologies (eg, agency
credit ratings from S&P Global Ratings or Moody’s) and credit scoring models
(eg, scorecards developed by banks or FICO scores).

The PD scoring model is most prevalent among the credit measurement method-
ologies used historically. One of the first models in this class was a multiple dis-
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criminant analysis (MDA), as illustrated in the classic paper by Altman (1968).
These types of models have the advantages of being cost-efficient to deploy and
not subject to subjectivity or inconsistency, as observed in expert systems. Altman
and Narayanan (1997) documented how these models became prevalent across the
industry and academia and concluded that the similarities across applications are
more pronounced than the differences. Another class of credit scoring models that
is now widespread is the logistic regression model (LRM) (Hosmer et al 2013), a
prime example of which is the RiskCalc model from the vendor Moody’s Analyt-
ics (Dwyer et al 2004). This is used for commercial credit risk and considered an
industry standard.

More advanced studies on the development, application and evaluation of pre-
dictive decision support models in the credit industry have been conducted beyond
the aforementioned seminal academic and vendor approaches. Thomas (2010) high-
lights that corporate risk models employ data from balance sheets, financial ratios or
macroeconomic indicators, whereas retail models use data from application forms,
customer demographics and customer transaction history. He attributes these differ-
ences to specific modeling challenges that arise in consumer, as opposed to corpo-
rate, credit scoring and that lead many studies to focus on either the corporate or
the retail business. Garcı́a et al (2010) highlight how in PD scorecard development
statistical hypothesis testing is often neglected or employed inappropriately, as the
assumptions of parametric tests are violated in classifier comparisons, focusing on
pairwise comparisons without p-value adjustments, which increase the actual proba-
bility of type I errors. Hofer (2015) addresses the research question of how to update
PD scorecards in the face of new information, which is increasingly relevant to the
industry as modeling data becomes more granular, especially in the retail sector but
also for wholesale portfolios as there has been a movement from annual to quarterly
observations. Hao et al (2011) propose a novel algorithm with several classifiers,
paired algorithms and ensemble strategies in a factorial design, which focuses on
preselected methods and omits a systematic comparison of several state-of-the-art
classifiers, while Abellán and Mantas (2014) feature fewer classifiers and propose a
novel algorithm that is compared with various reference methods. Finally, the bench-
marking study by Lessmann et al (2015) compares several novel classification algo-
rithms in state-of-the-art PD credit scoring models, in which they examine the extent
to which the assessment of alternative scorecards differs across established and novel
indicators of predictive accuracy.

In his seminal paper on the structural approach to credit risk, Merton (1974) mod-
els equity in a firm with leverage as a call option on assets where the strike price
coincides with the face value of the debt. The PD is derived by solving for the option
value numerically with the unobserved asset value and its volatility given the quantity
of debt and a valuation horizon. The product of this process is a firm’s DTD, which
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represents the number of standard deviations separating asset and debt repayment
values and is inversely related to the PD. The CreditEdge public firm model devel-
oped by Moody’s Analytics is a well-established implementation of this framework
that also uses historical default rates to empirically calibrate the output and produces
the expected default frequency (EDF). Since the EDFs are ultimately based upon
equity prices, there is consequently a heightened sensitivity to the changing finan-
cial state of the obligor, in contrast to agency credit ratings, which are more reliant
on static data available at the time of underwriting or periodic reassessment of the
borrower.

Another class of commonly used credit risk models arises from the previously
discussed structural Merton approach and an alternative reduced-form framework
originated by Jarrow and Turnbull (1995) and Duffie and Singleton (1999) that uses
intensity-based models to estimate stochastic hazard rates. This school of thought
differs in the methodology employed in estimating PDs. While the structural Merton
approach considers an economic process that produces defaults, the reduced-form
approach extracts a random intensity process that generates defaults from the prices
of defaultable debt. A prominent example of a model in this class is the proprietary
Kamakura Risk Manager, which incorporates an econometric methodology based on
Chava and Jarrow (2004). This so-called Jarrow–Chava model (JCM) is sometimes
called a hybrid approach, in that it combines the direct modeling of default, as in the
LRM, with the use of either equity or debt market data, and in the case of traded
debt instruments this construct has the potential to control for the distorting effect
of illiquidity on the measurement of default risk. Note that a critique of the JCM
is that the presence of anomalies, such as embedded options in the debt markets,
can adversely impact the accuracy of these models. In this study, we circumvent this
limitation by combining the use of fundamental factors, as in the LRM, with equity
market information, as in the structural Merton model, in our version of a hybrid
hazard rate model, as will be detailed in Section 3.

Beyond these seminal studies and vendor applications, there are several more
recent and state-of-the-art studies that apply survival analysis in credit risk modeling.
Baesens et al (2005) discuss and contrast statistical and neural network approaches
for survival analysis. Several neural network survival analysis models are discussed
and evaluated according to how they deal with censored observations, time-varying
inputs and the monotonicity and scalability of the generated survival curves. Baesens
et al compare the performance of a neural network survival analysis model with that
of the proportional hazards model for predicting both loan default and early repay-
ment, using data from a UK financial institution. Dirick et al (2015) study a special
type of survival model called the mixture cure model, which facilitates the prediction
of multiple events of interest, such as default and early repayment.
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Stress testing based upon hypothetical scenarios, usually a blend of macro-
economic projections and the application of judgmental elements, has become a
prevalent tool in the supervision of financial institutions (Financial Services Author-
ity 2008). The qualitative aspect of the stress testing process is considered by some
to be deficient, as illustrated by the critique of the exercise conducted by US supervi-
sors during the 2007–9 global financial crisis, where the projection of unemployment
in the 2009 adverse scenario fell short of the realization of this factor in under a year
and was therefore deemed to be insufficiently severe (Board of Governors of the Fed-
eral Reserve System 2009). In his analysis of this incident, Baker (2009) claims that
the supervisors may have underpredicted loan losses on the order of US$120 bil-
lion, placing him among those who conclude that this surprise on the part of the
regulators is evidence that these tests are failures. In the retail credit risk context,
Haldane (2009) attributes this weakness to either the omission of, or the underpre-
diction of the impact of, risk factors in the dynamic macroeconomic model that was
used (the so-called disaster myopia). He also points to the phenomenon termed “mis-
aligned incentives”, which means that institutions had no intention of designing real-
istic stress tests. Jacobs (2019) shows that, in addition to these downward biases, the
prevalent econometric methodologies used by many supervisors and banks may be
subject to heightened inaccuracies, which are attributed to a misspecified dependence
structure between risk factors. He also highlights the challenges resulting from the
paucity of default data in applying high-dimensional approaches to the stress testing
of credit risk, as in the common approach investigated and improved upon, which
will necessarily feature misspecified correlations that will give rise to inaccuracies.

There is a well-established literature on the applications of the survival approach
to default prediction, as applied to stress testing applications, that follows the period
of the pre-2010 downturn, an essentially profound paradigm shift to a stream of
research presenting a variety of novel approaches, attributable to the increased impor-
tance of stress testing in the Basel III regulation and in daily practice by regulators.
Bellotti and Crook (2013) estimate discrete-time survival models of borrower default
for credit cards that include behavioral and macroeconomic factors across the life of
the loan. They find that the dynamic models that include these variables provide sta-
tistically significant improvements in model fit and improved forecasts of default at
both account and portfolio levels when applied to an out-of-sample data set. They
also simulate extreme economic conditions and show how these models can be used
to stress test credit card portfolios. Bellotti and Crook (2014) offer improved method-
ologies for scenario generation to predict default rates for retail portfolios imple-
mented using discrete survival analysis, enabling macroeconomic conditions to be
included as time-varying covariates. They depart from traditional models by employ-
ing Monte Carlo simulation to generate a distribution of estimated default rates from
which value-at-risk (VaR) and expected shortfall are computed as a means of stress
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testing. Breeden and Crook (2022) propose the use of survival models suitable for
CECL stress testing that include lagged delinquency as a covariate and using a large
sample of 30-year mortgages. They show that the proposed method is more accurate
than any of the other methodologies they considered (roll rate, state transition and
vintage models) for both short-term and long-term predictions of the default.

Finally, we review some of the foundational studies in the quantification of model
risk according to the principle of relative entropy. Hansen and Sargent (2007) pro-
pose an alternative paradigm to the standard theory of decision-making under uncer-
tainty based on a statistical model that informs an optimal distribution of outcomes.
They adapt robust control techniques through developing a theory of model risk mea-
surement that acknowledges misspecification in economic modeling and they apply
this framework to a variety of problems in dynamic macroeconomics. Glasserman
and Xu (2014) apply this framework to a financial risk measurement that relies on
models of prices and other market variables that inevitably rely on imperfect assump-
tions that give rise to model risk. They develop a framework for quantifying the
impact of model error through measuring and minimizing risk in a way that is robust
to model error. Their robust approach starts from a baseline model and finds the
worst-case error in risk measurement that would be incurred through a deviation
from a baseline model given a precise constraint on the plausibility of the deviation.
Using relative entropy to constrain model distance leads to an explicit characteriza-
tion of worst-case model errors that lends itself to Monte Carlo simulation, allowing
the straightforward calculation of bounds on the model error with very little computa-
tional effort beyond that required to evaluate performance under the baseline nominal
model. They apply this technique to a variety of applications in finance, such as prob-
lems of portfolio risk measurement, credit risk, delta hedging and counterparty risk
measured through credit valuation adjustment. Skoglund (2019) applies the principle
of relative entropy to quantify the model risk inherent in loss-projection models used
in macroeconomic stress testing and impairment estimation in an application to a
retail portfolio and a delinquency transition model. He argues that this technique can
complement traditional model risk quantification techniques, where a specific direc-
tion or range of model misspecification reasons, such as model sensitivity analysis,
model parameter uncertainty analysis, competing models and conservative model
assumptions, is usually considered.

3 MODEL METHODOLOGY AND CONCEPTUAL FRAMEWORK

In this section, we outline the development of the econometric framework that we
employ. We proceed by first describing the most general model and defining a set
of common terms. We then describe various special cases, starting with the hazard
rate survival model in continuous time, followed by the discrete-time version of this
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model. Finally, we describe the implementation of the landmark (or snapshot)4 data
sample design of the latter version of the hazard rate model.

Let us denote by t the calendar time, which we decompose as t D ai C �i . The
time of origination is ai (ie, the date on which the snapshot is measured) and the
time of duration is �i (ie, the time from the measurement of the snapshot to the end
of the forecast horizon). Units of observation or obligors are subscripted by i for
i D 1; : : : ; N obligors. We may record time at various granularities, in the case
of C&I borrowers either quarterly or annually, and while spacing may be irregular
due to the exact timing of when financial statements are spread, in general these
will be in multiples of one quarter, so that in reality we are dealing with discrete
sampling. Variables subscripted by i differ among borrowers but not temporally (like
a segmentation characteristic of a borrower, such as a PD scorecard or an industry
group). Variables subscripted by t differ through calendar time, but are common
among obligors (as with a macroeconomic variable), and a term subscripted by i t
may be permitted to vary both temporally and cross-sectionally (as with a financial
ratio). The corresponding risk factors or covariates are given bywi , zt and xit , while
the respective parameter vectors are given by ˇ1, ˇ2 and ˇ3. The terms 12, 13
and 23 denote matrixes of interaction term parameters between these three sets of
parameters to be estimated.

The following describes a rather general and stylized econometric model of PD
with respect to obligor i in a discrete-time period t . We will later impose restrictions
upon this framework to arrive at a representation of the credit risk models used in
practice. Let us denote by d�it a continuous latent variable representing the utility5

gained by the default of borrower i in period t . We define the event of default as
dit D 1 if d�it > 0, and the event of non-default as dit D 0 if d�it 6 0. Suppose that
this latent variable is a function linear in the risk factors and their interaction terms
plus a residual term �it and borrower-specific intercept term ˇ0i :

d�it D ˇ0i Cw
T
i ˇ1 C z

T
t ˇ2 C x

T
itˇ3 Cw

T
i 12zt Cw

T
i 13xit C z

T
t 23xit C �it ;

(3.1)

4 In the snapshot data sample design, for variables that have a different frequency such as quarterly
macroeconomic variables but annual or semi-annual financial variables, for each instance of the
former we create a time series that evolves while the latter is frozen (Houwelingen and Putter
2008).
5 Since regression-based approaches to PD modeling are inherently empirical (in contrast to struc-
tural Merton model approaches), there is, strictly speaking, no theoretical model to describe. How-
ever, we can link the logistic regression approach to the economic theory of consumer or producer
behavior, where the state of default can be viewed as a decision made by either a borrower or lender
who is optimizing a utility function (Small and Rosen 1981).
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and then define the conditional PD as

PDit D P.dit D 1 j wi ; zt ;xit /; (3.2)

which implies that

P.dit D 1 j wi ; zt ;xit /

D P.�it 6 ˇ0i Cw
T
i ˇ1 C z

T
t ˇ2 C x

T
itˇ3 Cw

T
i 12zt Cw

T
i 13xit C z

T
t 23xit /

D F.ˇ0i Cw
T
i ˇ1 C z

T
t ˇ2 C x

T
itˇ3 Cw

T
i 12zt Cw

T
i 13xit C z

T
t 23xit /;

(3.3)

where the distribution function of �it is given by F.�/. The variables subscripted by
time may include lags of variable lengths.

Through the imposition of restrictions or assumptions governing various model-
ing aspects it may be demonstrated how this construct subsumes many PD models
currently employed by practitioners. A canonical case is obtained by restricting all
of the interaction terms to zero, which gives rise to the typical PIT PD model used in
early warning or credit portfolio management:

P.dit D 1 j wi ; zt ;xit / D F.ˇ0i Cw
T
i ˇ1 C z

T
t ˇ2 C x

T
itˇ3/: (3.4)

Usually, in this setting, t is a horizon spanning from one month to one year, and the
function F.�/ is typically the logistic link function of the LRM, 1=.1 C exp.�x//
(Hosmer et al 2013). It is common among practitioners to employ a linear transfor-
mation to the left-hand side term in (3.4), deriving a quantity interpreted as a “score”,
where an alternative means of deriving this is through scaling the logit estimate.

An important observation is that the model in (3.3) and (3.4) may not be suitable
for an unbalanced panel data set,6 which is exactly the format of data typical of the
C&I asset classes. What this data design means is that there will be defaulted oblig-
ors over the prediction horizon, where subsequent performance is unobservable or
otherwise recorded at alternative noncontiguous calendar times in the modeling data
set. The consequence of this is potential bias in parameter estimates. Among the var-
ious means of accommodating this phenomenon is the survival analysis estimation
technique (Kalbfleisch and Prentice 2002; Cox and Oakes 1984). This framework is
prevalent in retail credit risk modeling, where the approximation of discrete time as

6 Panel data can also be characterized as unbalanced panel data or balanced panel data. Balanced
panel data sets have the same number of observations for all groups. Unbalanced panel data sets
have missing values at some time observations for some of the groups. The main concern with
unbalanced panel data is the question of why the data are unbalanced. If observations are missing
at random, then this is not a problem. As an example, if the attrition of firms in your data over time
is not random, ie, it is related to the idiosyncratic errors, then this sample selection may bias the
estimates.
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12 M. Jacobs Jr.

continuous is more likely to be realistic, as opposed to the wholesale setting, where
this assumption is more likely to be tenuous.

We first review the case of the continuous-time survival model, where the tar-
get quantity is the instantaneous probability of transitioning from one state (eg, an
obligor with performing loans) to another (eg, default). Denoting by Ti the duration
time to obligor default implies that the conditional PD in the next instant, given that
the obligor is currently not in default, may be represented by the hazard function
having the duration time � :

�i .�/ D lim
��!0

P.Ti 2 Œ�; � C��� j Ti > �/

��
: (3.5)

It follows that the survival probability (ie, the probability of not being in default
over some time interval) may be expressed as a function that can be written as the
following integral representation of the hazard function:

S.�/ D P.Ti > �/ D exp
�
�

Z �

qD0

�i .q/ dq
�
: (3.6)

A popular approach in both the academic literature and consumer credit practice
is the use of the Cox proportional hazard model (CPHM) (Cox 1972) to estimate
the hazard function as well as the related survival probabilities. The CPHM model
further admits inclusion of dynamic covariates and can be expressed as

�i .ai ; �i ;wi ; z;x;ˇ/

D �0.�/ expŒˇ0i CwT
i ˇ1 C z.ai C �i /

Tˇ2 C x
T
i .�/ˇ3

CwT
i 12z.ai C �i /Cw

T
i 13xi .�/C z.ai C �i /

T23xi .�/�;

(3.7)

where the risk factors xi .�/ are obligor specific and dynamic across the time of dura-
tion (eg, financial variables), z.aiC�i / are risk factors varying over absolute time but
constant over the cross section (eg, macroeconomic factors), and �0.�/ is a baseline
hazard function of time which models the evolution of default risk independently
of the other risk factors (ie, the idea being that this is a time-dependent residual of
sorts). In this construct, forecasts of obligor financial or macroeconomic conditions
after the beginning of a forecast period propagate through all subsequent time periods
and influence the hazard function and survival probabilities over the entire forecast
horizon.

There are various ways in which standard LRMs are inferior to survival models.
First, survival models admit PD prediction over arbitrary forecast horizons apart from
the window of the default flag used in developing the LRM, such as a one-year
horizon of most PIT PD models, and thus are inherently suitable for applications such

Journal of Risk Model Validation www.risk.net/journals



Quantification of model risk with an application to PD estimation and stress testing 13

as CECL or DFAST loss forecasting. In addition, unlike in LRMs the PD predictions
in survival models are conditional on not previously having been in default, and
the data would have to be modified (as discussed below) in order to accommodate
conditional defaults. Finally, as survival probabilities are available across the entire
projection horizon there is the potential for an application to profitability forecasting,
or for use as a challenger to an economic capital construct.

In (3.3) we represent a discrete-time panel model of binary choice, which is an
LRM built upon a panel data design and is equivalent to a discrete-time survival
model. We previously alluded to the fact that it is most common for financial insti-
tutions to use panel data sample designs that could be used to model dynamic risk
factors. Essentially, this involves estimating LRMs for a set of fixed horizons but
with a different model for each forecast window (for example for quarters 1 through
3 � 4 D 12 for CECL/DFAST applications). In fact, this is the approach taken by
the vendor Kamakura in its corporate PD model, with the obvious disadvantage that
it is extremely resource intensive and requires a specialized software infrastructure.
Another issue with this approach is the degradation of performance as the default
horizon lengthens. This may be undesirable in an application such as CECL where
there is a premium on accuracy, in the sense of predicting the level of default rates,
as well as in distinguishing between defaults and non-defaults.

An alternative to estimating an LRM for each forecast horizon (as just described),
which gives identical results in the academic literature and, in some cases, in retail
credit risk modeling, and can be implemented in some standard software packages
(eg, PYTHON scikit-survival), is as follows. As we have a discrete-time
panel data sample design, then, given a modeling data set design matrix of appro-
priate form, a discrete survival model may be estimated with a hazard function of the
following form:

hd
i .ai ; �i ;wi ; z;x;ˇ/ D P.Ti 2 Œ�i � 1; �i � j Ti > �i � 1/

D 1 �
S.ai ; �i ;wi ; z;x;ˇ/

S.ai ; �i � 1;wi ; z;x;ˇ/
; (3.8)

where we denote by hd
i the discrete hazard rate for the i th obligor and by S.�/ the

associated survival probability. Cox (1972) has proposed the following specification
of this relationship:

logit.hd
i .ai ; �i ;wi ; z;x;ˇ// D logit.hd

i .�i //Cw
T
i ˇ1 C z

T
t ˇ2 C x

T
itˇ3; (3.9)

where the logit function (or log-odds ratio function) is the inverse of the logistic link
function F �1.x/ D log.x=.1�x// and the discrete baseline hazard function is given
by hd

i .�i /.
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Jenkins (1995) proposes estimating the model (3.9) by specifying indicator vari-
ables corresponding to each time interval. Alternatively, Singer and Willett (1993)
suggest using functions of the duration time index to capture this effect as a legiti-
mate approach. In either case, we define a default indicator that is zero in all inter-
vals where default is not observed and unity during the period where a default occurs.
Subsequent to default the obligor does not appear in the data set so long as the default
is not cured, in which case the obligor reappears in the data set as a performing entity
and the indicator is reset to zero.

The specifications discussed in this section prior to the models in (3.8) and (3.9)
have all assumed that time is continuous, but as we have pointed out this is not the
case in reality, and, moreover, in the C&I asset class with quarterly observations this
is likely to not be a realistic setup. Stepanova and Thomas (2002) find in spite of this
argument that estimation results assuming continuous or discrete time show little
difference. This may not be surprising, as Kalbfleisch and Prentice (2002) show that
as the observation intervals tend to zero the discrete- and continuous-time models do
indeed converge. Nevertheless, we believe the observation that the continuous-time
model is an adequate approximation could be highly dependent on the particular data
set, and in our case we do not find the differences to be immaterial in terms of either
the coefficient estimates or the measures of model performance, which leads us to
favor employing a discrete-time model.

Finally, we come to the approach used to estimate the hazard models in this
research, which is based upon a paper by Houwelingen and Putter (2008) in the bio-
statistics literature. They model survival probabilities at a five-year horizon for acute
lymphocytic leukemia patients after transplantation of bone marrow. This research
proposes a landmark methodology and compares it with an established multistate
modeling methodology in biostatistics. Houwelingen and Putter show that this tech-
nique greatly simplifies the modeling methodology, as it reduces to LRM estimation
on the so-called snapshotted data set and leads to easy-to-interpret prediction rules.

At each landmark (snapshot in our terminology) point a simple Cox constant base-
line hazard model is fitted on the interval, which is mathematically equivalent to esti-
mating an LRM model on the restructured data set. This is in line with the method-
ologies used in the industry for PD scorecard development and does not assume
continuous time, is less computationally intensive than the panel logistic approach
of Kamakura and allows for simple implementation within standard software such
as PYTHON. Our approach can be expressed mathematically as a modification of the
LRM equation (3.4):

P.dit D 1 j w
S
i ; z

S
t ;x

S
it ; t

s
i /

D F.ˇ0i C f .t
s
i /Cw

ST

i ˇ1 C z
ST

t ˇ2 C x
ST

it ˇ3 C g.t
s
i x

ST

it ˇ4//; (3.10)
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where the snapshotted data set is given by

XS
it D .f .t

s
i /;w

S
i ; z

S
t ; : : : ;x

S
it ; g.t

s
i x

S
it //;

t si is the time since snapshot, f .�/ is an appropriate transformation of the latter, t si x
S
it

is a set of time-interacting terms on the obligor-specific variables that vary over time
(which can include the PD rating as well as financial ratios), and g.�/ is some appro-
priate transformation of the latter. The time interactions capture the decay effects
over a forecasting horizon with respect to obligor specific risk factors. The term
f .t si / is analogous to the baseline hazard function in the Cox proportional hazard
specification of (3.10).7

4 EMPIRICAL ANALYSIS

4.1 Description of modeling data

In this section we describe the data used in the empirical experiment. We collected
data that are representative of a large corporate portfolio of borrowers, as would be
held by a typical US bank. We used well-known sources that over the years would
have been examined by multiple researchers and modelers, assuring good data qual-
ity at the start. Apart from this we performed the standard data cleaning procedures
to further maximize the chances of having the best quality data available. We inten-
tionally tried to maximize the historical time period and the range of variable types
in order to have the most robust models as possible. The following data are used for
the development of the models in this study.

Compustat. Standardized fundamental and market data for publicly traded compa-
nies, including financial statement line items and industry classifications (Global
Industry Classification Standards (GICS) and North American Industry Classifi-
cation System (NAICS)) over multiple economic cycles from 1979 onward. These

7 However, a downside of this approach is that the model fit obtained that is available in standard
software cannot be used to test the statistical significance of the parameter estimates. The correct
standard errors can be obtained by taking into account the clustering of the data (ie, each snapshot
is effectively a separate case, several such cases exist for each obligor and there is correlation over
time in the former and cross-sectionally in the latter) using the so-called sandwich estimators of
Lin and Wei (1989). This approach is incorporated in software packages such as SAS (the GENMOD
or SURVEYSELECT procedures) or PYTHON (the generalized estimation equations in the logistic
regression function of the statsmodels library). However, such approaches are very computa-
tionally intensive, and exhibit stability issues in the case where we have highly unbalanced panels,
where the latter means nothing more than defaults being relatively rare and concentrated over time.
However, in this research we obtain standard errors through bootstrapping, where we impose the
proper stratification to preserve the correlation structure of the data, which is straightforward to
implement in PYTHON due to vectorized operations.
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data include default types such as bankruptcy, liquidation and rating agencies’
default rating, all of which are part of the industry standard default definitions.

Moody’s Default Risk Service (DRS) Rating History. An extensive database of rat-
ing migrations, default and recovery rates across geographies, regions, industries
and sectors.

BankruptcyData New Generation Research, Inc. Provides information on corporate
bankruptcies.

Center for Research in Security Prices (CRSP) US Stock Databases. This product
is comprised of a database of historical daily and monthly market and corporate
action data for over 32 000 active and inactive securities with primary listings on
the New York Stock Exchange (NYSE), NYSE American, Nasdaq, NYSE Arca
and Better Alternative Trading System (BATS) exchanges, and it includes CRSP
broad market indexes.

A series of filters are applied to this Moody’s population to construct a population
that is closely aligned with the large corporate segment of US companies that are
publicly rated and have publicly traded equity. In order to achieve this using Moody’s
data, the following combination of NAICS and GICS industry codes, regional codes
and a historical yearly net sales threshold are used.

(1) Non-C&I obligors defined by the following NAICS codes (see Table 1) are not
included in the population:

� financials;

� real estate investment trusts;

� government;

� dealer finance;

� not for profit.

(2) A similar filter is performed according to the GICS (see Table 2) classification:

� education;

� financials;

� real estate.

(3) Only obligors based in the United States or Canada are included.

(4) Only obligors with maximum historical yearly net sales of at least US$1 billion
are included.

Journal of Risk Model Validation www.risk.net/journals
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(5) There are exclusions for obligors with missing GICS codes, and for model-
ing purposes obligors are categorized into different industry segments on this
basis.

(6) Records prior to 1991 Q1 are excluded, the rationale being that capital markets
and accounting rules were different before the 1990s, and the macroeconomic
data used in the model development are only available after 1990. As one-
year change transformations are among those applied to the macroeconomic
variables, this cutoff is advanced one year from 1990 to 1991.

(7) Records that are too close to a default event are not included in the devel-
opment data set. This is an industry standard approach, the rationale being
that the records of an obligor in this time window do not provide information
about future defaults of the obligor, but rather they are more likely to reflect
existing problems that the obligor is experiencing. This restriction corrects a
range of timing issues between when statements are issued and when ratings
are updated.

(8) In general, the defaulted obligors’ financial statements after the default date
are not included in the modeling data set. However, in some cases obligors
may exit a default state or “be cured” (eg, emerge from bankruptcy), in which
case the statements between the default date and the cure date are not included.

In our opinion, these data exclusions are reasonable, in line with industry stan-
dards, sufficiently documented and do not compromise the integrity of the modeling
data set.

The model development time period considered for the Moody’s data is 1991 Q1–
2015 Q4. Table 1 shows a comparison of the modeling population by GICS indus-
try sectors, where for each sector the defaulted obligors columns represent the
defaulted obligors in the sector as a percentage of the entire population. The data
are concentrated in consumer discretionary (20%), industrials (17%), tech hardware
and communications (12%) and energy except Exploration & Production (E&P)
(11%). A similar industry composition is shown in Table 2 according to the NAICS
classification system.

The model development data set contains financial ratios and default informa-
tion that are based upon the most recent data available from DRS, Compustat and
BankruptcyData, so that the data are timely and, a priori, should be give the benefit
of the doubt with respect to favorable quality. Further, the model development time
period 1991 Q1–2015 Q4 spans two economic downturn periods and a complete
business cycle, the length of which is another factor that supports a verdict of good
quality. Related to this point, we plot the yearly and quarterly default rates in the
model development data set in Figure 1.
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TABLE 1 Moody’s large corporate modeling data analysis and GICS industry segment
composition for all Moody’s obligors versus defaulted Moody’s obligors (1991–2015).

All Defaulted
Moody’s Moody’s

GICS industry segment obligors obligors

Consumer discretionary 19.6 30.9
Consumer staples 8.4 6.4
Energy 7.6 5.9
Healthcare equipment & services 2.9 2.9
Industrials 31.6 15.1
Materials 10.5 11.3
Pharmaceuticals & biotechnology 2.7 0.2
Software & IT services 2.5 1.8
Technology hardware & communications 4.3 11.3
Utilities 7.6 5.6

All values are given in percent.

TABLE 2 Moody’s large corporate modeling data analysis and NAICS industry segment
composition for all Moody’s obligors versus defaulted Moody’s obligors (1991–2015).

All Defaulted
Moody’s Moody’s

NAICS industry segment obligors obligors

Agriculture, forestry, hunting & fishing 0.2 0.4
Accommodation & food services 2.3 2.9
Waste management remediation services 2.4 2.1
Arts, entertainment & recreation 0.7 1.0
Construction 1.7 2.5
Educational services 0.1 0.2
Healthcare & social assistance 1.6 1.6
Information services 11.5 12.1
Management compensation enterprizes 0.1 0.1
Manufacturing 37.7 34.4
Mining, oil & gas 6.8 8.6
Other services (ex-public administration) 0.4 0.6
Professional, scientific & technological services 2.3 2.5
Real estate, rentals & leasing 0.9 1.6
Retail trade 9.6 12.4
Transportation & warehousing 5.4 7.0
Utilities 8.3 5.4
Wholesale trade 7.0 2.7

All values are given in percent.
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FIGURE 1 PD model large corporate modeling data: one-year and one-quarter horizon
default rates over time (1991–2015).
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In Table 3 we present the summary statistics for the variables that appear in our
final models. These final models were chosen based upon an exhaustive search algo-
rithm in conjunction with five-fold cross-validation, and we have chosen the leading
three models incorporating and omitting the DTD risk factor. The following are the
categories and names of the explanatory variables appearing in the final candidate
models:

� financial/liquidity current ratio (CR), net working capital to tangible assets
ratio (NWCTAR), adjusted cash ratio (ACR);

� macroeconomic unemployment rate (UR), S&P 500 equity index (S&P), non-
farm employment (NFE), Baa corporate bond spread (SPR) and Dow Jones
equity index (DOW);

� credit quality PD rating (PD);

� duration time since snapshot (TSS); and

� Merton structural distance-to-default (DTD).8

8 All candidate explanatory variables are winsorized at either the 10th, 5th or 1st percentile levels at
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4.2 Econometric specifications and model validation

In Tables 4 and 5 we present the estimation results and in-sample performance statis-
tics for our final leading models; the remaining runner-up models are shown in
Appendix B online as the results are qualitatively similar. In Table 4 we tabulate
the results for the leading models with the DTD risk factors included as well as the
other explanatory variables, whereas in Table 5 we show the best models that omit
the DTD variable.

Across the models, the signs of the coefficient estimates are in line with economic
intuition, and significance levels are indicative of very precisely estimated parame-
ters. The macroeconomic variables associated with improving economic conditions
(S&P, NFP and DOW) have negative signs, while those that indicate deteriorating
conditions (UNP and SPR) have positive signs. The duration variable TSS has a
positive sign, which is consistent with the intuition that on an unconditional basis
default risk increases over time, given that the preponderance of the obligors in the
sample are rated better than speculative grade. The sign on the PD rating is positive,
which makes sense in that worse rated obligors have higher default risk. The finan-
cial ratios measuring borrower liquidity all have negative signs, as greater levels of
such resources diminish the chances of a default, while the interaction terms with
time are positive, the latter indicating sensibly that the efficacy of this factor decays
over time. Finally, the negative signs on DTD indicate that firms further away from
their default points have lower default risk, as expected.

Area under the curve (AUC) statistics indicate that the models have a strong abil-
ity to rank order default risk. The associated receiver operator characteristics (ROC)
curves are shown in Figure 2 (Figure 4) for the leading model, which has the DTD
risk factors included with (excluded from) the other explanatory variables. Regarding
measures of predictive accuracy, in all cases the pseudo R-squared (PR2) indicates
that all models exhibit good fit, which is confirmed by the plots of the predicted PD
versus the default rates over time, as shown in Figure 3 (Figure 7) for the leading
model that has the DTD risk factor included with (excluded from) the other explana-
tory variables. As expected, the Akaike information criterion (AIC) and PR2 predic-
tive accuracy measures deteriorate when the DTD risk factors are omitted, but this
rank ordering does not carry over to the AUC discriminatory power measure except
in the case of the first leading model of each type.

In Figures 6–10 we show the 12-quarter baseline and adverse scenario macro-
economic forecasts for the models, with the average PDs. These scenarios are
sourced from Moody’s Analytics as of 2021 Q4. We observe that, while all the

either tail of the sample distribution, in order to mitigate the influence of outliers or contamination
in data and according to a customized algorithm that analyzes the gaps between these percentiles
and caps/floors where these are maximal.
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TABLE 4 Hazard rate regression estimation results: Moody’s large corporate financial,
macroeconomic credit quality, duration and Merton DTD explanatory variables for one-
quarter default model 1.

Coefficient Standard
Variable estimate error P-value

S&P 500 equity price index �0.4425 0.0180 0.0000
Unemployment rate 0.1465 0.0165 0.0000
Logarithm of PD 1.0383 0.0335 0.0000
Logarithm of time 0.0375 0.4967 0.0000
(Logarithm of PD)*(logarithm of time) �0.026 0.1540 0.0095
Net working capital to tangible assets �0.4984 0.1791 0.0000
(Net working capital to tangible assets)*(time) 0.0198 0.1650 0.0061
DTD �0.5786 0.2547 0.0082
Constant �0.3050 0.1426 0.0047
Loglikelihood �18 192.00
AIC 36 400.63
Pseudo-R-squared 0.161
Area under the receiver operator curve 0.881

models show a reasonable pattern of stress in the adverse scenario relative to the
baseline scenario, the patterns exhibit significant variation across models, so that
the final model selection will be dependent upon which of these patterns is deemed
preferable by business and risk management experts, for reasons other than statistical
performance.

4.3 The quantification of model risk according to the principle of
relative entropy

In the building of risk models we are subject to errors from model risk, one source of
which is the violation of modeling assumptions. In this section we apply a method-
ology for the quantification of model risk that is a tool in building models robust
to such errors. A key objective of model risk management is to assess the likeli-
hood, exposure and severity of model error in that all models rely upon simplifying
assumptions. It follows that a critical component of an effective model risk frame-
work is the development of bounds upon a model error resulting from the violation
of modeling assumptions. This measurement is based upon a reference nominal risk
model and is capable of rank ordering the various model risks as well as indicating
which perturbation of the model has maximal effect upon some risk measure.

In line with the objective of managing model risk in the context of obligor-level
PD stress testing, we calculate confidence bounds around forecasted PDs spanning
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FIGURE 2 Hazard rate regression ROC: Moody’s large corporate financial, macro-
economic credit quality, duration and Merton DTD explanatory variables for one-quarter
default model 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1.0

F
a

ls
e

 p
o

s
it
iv

e
 r

a
te

False negative rate

model errors in the vicinity of a nominal or reference model defined by a set of
alternative models. These bounds can be likened to confidence intervals that quan-
tify sampling error in parameter estimation. However, these bounds are a measure of
model robustness that instead measure model error due to the violation of modeling
assumptions. In contrast, a standard error estimate conventionally employed in man-
aging credit portfolios does not achieve this objective, as this construct relies on an
assumed joint distribution of the asset returns or default correlation.

We meet our previously stated objective in the context of stressed PD modeling
through bounding a measure of loss, in this case the scenario PD forecasts, which can
reflect, within reason, a level of model error. We have observed that, while among
practitioners one alternative means of measuring model risk is to consider challenger
models, an assessment of estimation error or sensitivity in perturbing parameters is in
fact a more prevalent means of accomplishing this objective and one which captures
only a very narrow dimension of model risk. In contrast, our methodology transcends
the latter aspect to quantify potential model errors such as incorrect specification of
the probability law governing the model (eg, the distribution of error terms or the
specification of a link function in generalized linear regression, of which logistic
regression is a subclass), variables belonging in the model (eg, omitted-variable bias
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FIGURE 3 Hazard rate regression receiver accuracy plot: Moody’s large corporate finan-
cial, macroeconomic credit quality, duration and Merton DTD explanatory variables for
one-quarter default model 1.
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TABLE 5 Hazard rate regression estimation results: Moody’s large corporate financial,
macroeconomic credit quality and duration explanatory variables for one-quarter default
model 1.

Coefficient Standard
Variable estimate error P-value

S&P 500 equity price index �0.4608 0.0273 0.0000
Nonfarm employment �0.0739 0.0225 0.0010
Logarithm of PD 1.2973 0.1687 0.0000
Logarithm of time 2.4152 0.4995 0.0000
(Logarithm of PD) � (logarithm of time) �0.4115 0.1549 0.0079
Net working capital to tangible assets �0.8437 0.1794 0.0000
(Net working capital to tangible assets) � (time) 0.4438 0.1654 0.0073
Constant �5.0918 0.5431 0.0000
Loglikelihood �19 857.85
AIC 39 731.7
Pseudo R-squared 0.136
Area under the receiver operator curve 0.829

with respect to the DTD) or the functional form of the model equations (eg, neglected
transformations or interaction terms).

As these types of common model errors under consideration all relate to the like-
lihood of such an error, which in turn is connected to perturbation in the proba-
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FIGURE 4 Hazard rate regression ROC: Moody’s large corporate financial, macro-
economic credit quality and duration explanatory variables for one-quarter default mod-
el 1.
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bility laws governing the entire modeling construct, we apply the principle of rela-
tive entropy (Hansen and Sargent 2007; Glasserman and Xu 2014). Relative entropy
between a posterior distribution and a prior distribution is a measure of information
gain when incorporating incremental data in Bayesian statistical inference. In the
context of quantifying model error, relative entropy has the interpretation of a mea-
sure of the additional information requisite for a perturbed model to be considered
superior to a champion or null model. Said differently, relative entropy may be inter-
preted as measuring the credibility of a challenger model. Another useful feature
of this construct is that within a relative entropy constraint the so-called worst-case
alternative (eg, in our case, the upper bounds on the scenario forecasts caused by
ignoring some feature of the alternative model) can be expressed as an exponential
change of measure.

Model risk with respect to a champion model y D f .x/ is quantified by the
Kullback–Leibler relative entropy divergence measure to a challenger model y D
g.x/ and is expressed as follows:

D.f; g/ D
g.x/

f .x/
log

�
g.x/

f .x/

�
f .x/ dx: (4.1)

In this construct, the mapping g.x/ is an alternative PD model, and the mapping
f .x/ is some kind of benchmark, the latter being the base PD models that we have
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FIGURE 5 Hazard rate regression receiver accuracy plot: Moody’s large corporate finan-
cial, macroeconomic credit quality and duration explanatory variables for one-quarter
default model 1.
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FIGURE 6 Baseline and stressed macroeconomic scenario forecasts: Moody’s large
corporate financial, macroeconomic credit quality, duration and Merton DTD explanatory
variables for one-quarter default model 1.
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FIGURE 7 Baseline and stressed macroeconomic scenario forecasts: Moody’s large
corporate financial, macroeconomic credit quality and duration explanatory variables for
one-quarter default model 1.
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estimated in this paper that may be violating some model assumption. In a model
validation context this is a critical construct as the implication of these relations is
a robustness to model misspecification with respect to the alternative model (ie, we
do not have to assume that either the reference model or alternative model is correct
and we need only quantify the distance of the alternative from the reference model
to assess the impact of the modeling assumption at play). Define the likelihood ratio
m.f; g/, which characterizes our modeling choice and is expressed as follows:

m.f; g/ D
g.x/

f .x/
: (4.2)

As is standard in the literature, (4.2) may be expressed as an equivalent expectation
of a relative deviation in likelihood:

Ef Œm log.m/� D D.f; g/ < ı; (4.3)

where ı is an upper bound to deviations in model risk (which should be relatively
small), which may be determined by the model risk tolerance of an institution for
a certain model type and interpretable as a threshold for model performance. A
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property of relative entropy dictates that D.f; g/ > 0 and D.f; g/ D 0 only if
f .x/ D g.x/. Given a relative distance measureD.f; g/ < ı and a set of alternative
models g.x/, model error can be quantified by the following change of numeraire:

m� .f; g/ D
exp.�f .x//

Ef Œexp.�f .x//�
; (4.4)

where the solution (or inner supremum) to (4.4) is formulated in the following
optimization:

m� .f; g/ D inf
�>0

sup
m.x/

Ef
�
m.x/f .x/ �

1

�
.m.x/ log.m.x// � ı/

�
: (4.5)

Equation (4.5) features the parameterization of model risk by � 2 Œ0; 1�, where � D 0
is the best case of no model risk and � D 1 is the worst case of model risk in extremis.
The change in measure of (4.4) has the important property of being model-free, or
not dependent upon the specification of the challenger model g.x/. As mentioned
previously, this reflects the robustness to misspecification of the alternative model
that is a key feature of this construct, and is, from a model validation perspective, a
desirable property. In other words, we do not have to assume that either the champion
model or the alternative model is correct and only have to quantify the distance of
the alternative from the base model to assess the impact of violating the modeling
assumptions.

We study the quantification of model risk with respect to the following modeling
assumptions:

� omitted-variable bias;

� misspecification according to neglected interaction effects; and

� misspecification according to an incorrect link function.

Omitted-variable bias is analyzed by consideration of the DTD risk factor as dis-
cussed in the main estimation results in this paper, where we saw that including
this variable in the model specification did not result in other financial or macro-
economic variables falling out of the model, and it improved model performance.
The second assumption is based upon the estimation of alternative specifications that
include interaction effects among the explanatory variables. Finally, we analyze the
third assumption through estimation of these specifications with the complimentary
log–log (CLL) as opposed to the logit link function.9

9 The Logit link function used commonly in logistic regression is symmetric whereas CLL is asym-
metric. When the probability of the binary or binomial response approaches 0 at a different rate
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We implement this procedure in a bootstrap simulation exercise, where we develop
a distribution of the baseline and adverse macroeconomic forecasts at each horizon,
and study the high 95th and the low 5th percentiles of these distributions as upper
and lower bounds on model risk, respectively. In each iteration, we resample the data
with replacement (stratified in order that the history of each obligor is preserved),
and reestimate the models considered in the main body of the paper, as well as three
variants that include either DTD, interaction effects or a CLL link function. In the
case of the DTD risk factor, we will be comparing the variants, ie, those considered
in the main results, which have already been estimated, except that in each run the
results will be perturbed according to the different bootstraps of the data set, and in
the other two cases there will be alternative estimations.10

The results of the model risk quantification exercise are shown for the leading
model with the DTD risk factor for omitted-variable bias in Figure 8, for neglected
interaction effects in Figure 9 and for a misspecified link function in Figure 10. We
also tabulate the summary statistics of these results for all three models in Table 6.

It is observed in the width of the model risk bounds that omitted-variable bias with
respect to DTD results in the highest model risk, incorrectly specified link function
has the lowest measured risk and neglected interaction effects are intermediate in
the quantity of model risk. Two more notable characteristics of these results are the
asymmetry in the model risk bounds, which are skewed toward greater projected PD
estimates, and also that the bounds are not monotonic – these aspects are not featured
in the parametric confidence bounds, which measure pure parameter uncertainty.

5 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this study we measured the model risk attributable to various model assumptions
in dynamic econometric models of large corporate default according to the principle
of relative entropy. This methodology studies the distance of an alternative model to
a reference model according to some suitable loss metric (see Hansen and Sargent
2007; Glasserman and Xu 2014) and can capture dimensions of model uncertainty
error beyond parameter estimation error. This framework for measuring model risk
was applied to a CECL stress testing exercise of PD for a corporate portfolio. It was
observed that omitted-variable bias (with respect to the Merton DTD risk factor) has

than it approaches 1 (as a function of a covariate), symmetric link functions cannot be appropriate
and do not always provide the best fit for the given data set in binomial regression. This is the case
for the unbalanced data that we have. As defaults are very rare events, asymmetric link functions
such as the CLL are sometimes good alternatives.
10 For the sake of brevity, we do not include these results, but they are available from the author
upon request. Across 100 000 iterations the results are stable and robust across the base as well as
for the alternative specifications.
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FIGURE 8 Quantification of model risk according the principle of relative entropy fore-
cast upper and lower bounds for omitted-variable bias: Moody’s large corporate finan-
cial, macroeconomic credit quality, duration and Merton DTD explanatory variables for
one-quarter default model 1.
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the greatest impact upon measured model risk in terms of bounds on PD forecasts,
the incorrect specification of the link function has the least impact and the neglect of
interaction effects between risk factors has an intermediate impact. The importance
of this application is rooted in the sensitivity of the CECL or DFAST results from the
perspective of prudential supervision as well as accounting policy, as model valida-
tors or regulators often question the impact of faulty model assumptions on capital
and reserve projections. We addressed this issue through this research.

This quantification of model risk was accomplished through the consideration of
an obligor-level hazard rate methodology for corporate PD modeling that features
macroeconomic, financial, equity market, duration and credit rating variables. This
methodology was applied to stress testing for CECL, where we have departed from
the common practice for wholesale portfolios of adapting rating transition models
where the ratings are stressed for this purpose, and to our knowledge this is one
of the first studies in the literature to have done so. We have further innovated by
developing explicitly discrete-time hazard models with a specialized data sample
design (the landmark methodology) that is particularly tractable in computation. This
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FIGURE 9 Quantification of model risk according the principle of relative entropy forecast
upper and lower bounds for neglected interaction terms: Moody’s large corporate financial,
macroeconomic credit quality, duration and Merton DTD explanatory variables for one-
quarter default model 1.
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allows for the inclusion of a large number of variables and the utilization of a long
historical data set.

The models that we developed are particularly suitable to this experiment in
measuring model risk, as they feature rich risk modeling data and variable struc-
tures that allow for the investigation of varied modeling assumptions. Our base data
were a lengthy borrower-level history of corporate ratings and defaults sourced from
Moody’s in the period 1990–2015. The data were enhanced by attaching an exten-
sive set of financial, macroeconomic and equity market variables to form the basis of
candidate explanatory variables. The obligor-level hazard rate models developed had
a one-quarter default horizon and, further, featured time decay and duration effects.
Based upon the relevant literature, we also considered an alternative structural risk
factor, which is: the structural modeling DTD measure constructed from the market
value of equity and accounting leverage measures. We then compared these hybrid
structural–reduced-form models with the financial ratio and macroeconomic variable
only models. It has been shown that adding the DTD measures to our leading mod-
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FIGURE 10 Quantification of model risk according the principle of relative entropy fore-
cast upper and lower bounds for misspecified link function: Moody’s large corporate finan-
cial, macroeconomic credit quality, duration and Merton DTD explanatory variables for
one-quarter default model 1.
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els did not invalidate the other variables chosen but significantly augmented model
performance and resulted in comparable scenario forecasts.

We have addressed an overarching conceptual validation question regarding stress
testing in demonstrating the model’s fitness-for-purpose for use as inputs to down-
stream models. This is a particular concern in the case of wholesale portfolios, since
in this setting it is the more predominant practice to have this disconnect, which
leads to challenges in demonstrating the conceptual soundness of both credit risk
and stress testing models to model validators and supervisors (Global Credit Data
2019). The type of PD models we investigated in this paper addressed this issue as
they are directly applicable to stress testing. There is no known academic or practi-
tioner literature addressing this issue that is particular to the wholesale credit asset
class, which is where our research presents its main contribution.

Our conclusion is that validation methods chosen in the stress testing context
should be capable of testing model assumptions, given the sensitive regulatory uses
of these models and concerns raised in the industry about the effect of model mis-
specification on capital and reserves. Our research adds to the literature by offer-
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ing state-of-the-art techniques as viable options in the arsenal of model validators,
developers and supervisors seeking to manage model risk.

Given the wide relevance and scope of the topics addressed in this study, there
is no shortage of fruitful avenues along which we could extend this research. Some
proposals include, but are not limited to:

� alternative econometric techniques, such as various classes of machine learn-
ing models, including nonparametric alternatives;

� asset classes beyond the large corporate segments, such as small business, real
estate or even retail;

� the consideration of industry specificity in model specification; and

� data sets in jurisdictions apart from the United States, else pooled data en-
compassing different countries with a consideration of geographical effects.
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