Stress Testing and the Quantification of the Dependency Structure Amongst Portfolio Segments in Top-Down Credit Risk Modeling

Michael Jacobs, Jr.¹
Accenture Consulting

Draft: June 18, 2015

Keywords: Stress Testing, Correlation, CCAR, DFAST, Credit Risk, Financial Crisis, Model Risk, Vector Autoregression
JEL Classification: G11, G21, G22, G28, G32.

¹ Corresponding author: Michael Jacobs, Jr., Ph.D., CFA, Principal Director, Accenture Consulting, Financial Advisory, Risk Models, Methodologies & Analytics, 1345, Avenue of the Americas, New York, N.Y., 10105, 917-324-2098, michael.a.jacobs@accenture.com. The views expressed herein are those of the authors and do not necessarily represent a position taken either by Pricewaterhouse Coopers LLC, nor of any affiliated firms.
Abstract

A critical question that banking supervisors are trying to answer is what is the amount of capital or liquidity resources required by an institution in order to support the risks taken in the course of business. The financial crisis of the last several years has revealed that traditional approaches such as regulatory capital ratios to be inadequate, giving rise to supervisory stress testing as a primary tool. In the case of banks that model the risk of their portfolios using top-of-the-house modeling techniques, an issue that is rarely addressed is how to incorporate the correlation of risks amongst the different segments. An approach to incorporate this consideration of dependency structure is proposed, and the bias that results from ignoring this aspect is quantified, through estimating a vector autoregressive (“VAR”) time series models for credit loss using Fed Y9 data. We find that the multiple equation VAR model outperforms the single equation autoregressive (“AR”) models according to various metrics across all modeling segments.
1 Introduction, Conceptual Considerations and Motivations

Modern credit risk modeling (e.g., Merton, 1974) increasingly relies on advanced mathematical, statistical and numerical techniques to measure and manage risk in credit portfolios. This gives rise to model risk (OCC 2011-12, FED-BOG SR 11-7), defined as the potential that a model used to assess financial risks does not accurately capture those risks\(^2\), and the possibility of understating inherent dangers stemming from very rare yet plausible occurrences perhaps not in reference data-sets or historical patterns of data. In the wake of the financial crisis (Demirguc-Kunt et al, 2010; Acharya et al, 2009), international supervisors have recognized the importance of stress testing (ST), especially in the realm of credit risk, as can be seen in the revised Basel framework (BCBS 2005, 2006; BCBS 2009 a,b,c,d,e; BCBS 2010 a,b) and the Federal Reserve’s Comprehensive Capital Analysis and Review (CCAR) program.

Stress testing (“ST”) may be defined, in a very general sense, as a form of deliberately intense or thorough testing used to determine the stability of a given system or entity. This involves testing beyond normal operational capacity, often to a breaking point, in order to observe the results. In the financial risk management context, this involves scrutinizing the viability of an institution in its response to various adverse configurations of macroeconomic and financial market events. ST is closely related to the concept and practice of scenario analysis (“SC”), which in economics and finance is the attempt to forecast several possible scenarios for the economy (e.g. rapid growth, moderate growth, slow growth) or an attempt to forecast financial market returns (for bonds, stocks and cash) in each of those scenarios. This might involve sub-sets of each of the possibilities and even further seek to determine correlations and assign probabilities to the scenarios.

It can and has been argued that the art and science of has lagged in the domain of credit, as opposed to other types of risk (e.g., market), and our objective is to help fill this vacuum. We aim to present classifications and established techniques that will help practitioners formulate robust credit risk stress tests. Furthermore, we approach the topic of ST from the point of view of a typical credit portfolio, such as one managed by any number of medium or large sized commercial bank. We take this point of view for two main reasons. First, credit risk remains the predominant risk faced by financial institutions that are engaged in lending activities. Second, the importance of credit risk is accentuated for medium-sized banks. Further, newer supervisory requirements tend to focus on the smaller banks that were exempt from the previous exercise. In the interest of these objectives, we illustrate the feasibility of building a model for ST that can be implemented by even less sophisticated banking institutions, in addition to the more general pedagogical goal of illustrating the practical implications of a Bayesian methodology as applied to ST.

In Figure 1.1, net charge-off rates for the Top 50 banks in the United States are plotted. This is reproduced from a working paper by Inanoglu, Jacobs, Liu and Sickles (2014) on the efficiency

\[^2\] More precisely, model risk is defined as the risk that a model is faulty because either it does not capture the correct risk factors (model misspecification), does not correctly establish the relationship between risk factors and the risk being measured, or that the model is calibrated with faulty data or implemented with error.
of the banking system, which concludes that over the last two decades the largest financial institutions with credit portfolios have become not only larger, but also riskier and less efficient according to a stochastic frontier metric\(^3\). As we can see here, bank losses in the recent financial crisis far exceed levels observed in recent history. This illustrates the inherent limitations of backward-looking models reliant solely on historical behavior and the fact that in robust risk modeling we must anticipate risk, and not merely mimic history.

In Figure 1.2, a plot is shown from Inanoglu and Jacobs (2009), the bootstrap resample (Efron and Tibshirani, 1986) distribution of the 99.97th percentile Value-at-Risk (“VaR”) for the top 200 banks in a Gaussian copula model combining five risk types (credit, market, liquidity, operational and interest rate risk), as proxied for by the supervisory Federal Financial Institutions Examination Council (“FFIEC”) Call Report data. This shows that sampling variation in VaR inputs leads to huge confidence bounds for risk estimates, with a coefficient of variation of 35.4%, illustrating great uncertainty introduced as sampling variation in parameter estimates flows through to the risk estimate. Note that even this large variation assumes that the right model is selected.

\(^3\) This is according to a stochastic frontier methodology which measures this statistically by estimating a conditional Cobb-Douglas production function. There is no notion of a risk adjustment such as in the CAPM sense in this framework.
A classical dichotomy exists in the literature and the earliest exposition is credited to Knight (1921), who defines uncertainty as when it is not possible to measure a probability distribution or the probability distribution is unknown. This is contrasted with the situation where either the probability distribution is known, or knowable through repeated experimentation. Arguably, in economics and finance (and more broadly in the social or natural as opposed to the physical or mathematical sciences), the former is the more realistic scenario that we contend with (e.g., a fair vs. loaded die, or a die with an unknown number of sides.) We are forced to rely upon empirical data to estimate loss distributions, but this is complicated because of changing economic conditions, which conspire to invalidate forecasts that our econometric models generate.

Popper (1945) postulated that situations of uncertainty are closely associated with, and inherent with respect to, changes in knowledge and behavior. This is also known as the rebuttal of the *historicism* concept, which states that our actions and their outcomes have a pre-determined path. He emphasized that the growth of knowledge and freedom implies that we cannot perfectly predict the course of history. For example, a statement that the U.S. currency is inevitably going to depreciate, if the U.S. does not control its debt, is not falsifiable and therefore not a valid scientific statement according to Popper.

Shackle (1990) argued that predictions are reliable only for the immediate future. He argued that such predictions impact the decisions of economic agents, and this has an effect on the outcomes under question, changing the validity of the prediction (i.e., a feedback effect.) His recognition
of the role of human behavior in economic theory was a key impetus behind rational expectations and behavioral finance. The implication is that risk managers must be aware of model limitations and that a ST regime itself changes behavior (for example, banks “gaming” the regulators’ CCAR process\(^4\)). While it is valuable to estimate loss distributions that help make explicit the sources of uncertainty, we should be aware of the inherent limitations of this practice, a key factor in supporting the use of ST in order to supplement other risk measures. Finally, Artzner et al (1999) postulate some desirable features of a risk measure, collectively known as *coherence*. They argue that VaR measures often fail to satisfy such properties. This due to the mathematical structure of VaR (i.e., a raw quantile of a random variable as opposed to some moment of a random variable weighed by some loss metric) coupled with some basic axioms on the utility of risk managers or investors (i.e., monotonicity of preferences). For example, it can be shown that – under many circumstances – VaR may fail to satisfy the subadditivity property, which implies that in a VaR setting, the measured risk of a collection of activities might actually exceed the collection of the measured risks of each activity. To put this in other terms, this means that the VaR paradigm may result in the violation of the basic principle of the diversification of risks.

There are various possible definitions of ST. One common definition is the investigation of *unexpected loss* (“UL”) under conditions outside the ordinary realm of experience (e.g., extreme events not in our reference data-sets.) There are numerous reasons for conducting periodic ST, which are largely due to the relationship between UL and measures of risk, examples of the latter being *economic capital* (“EC”) or *regulatory capital* (“RC”). A key example of conducting ST is compliance with supervisory guidance on model risk management (e.g. OCC Bulletin 2011-12 on managing *model risk*) or bank stress test and capital plan requirements outlined by the Federal Reserve’s CCAR program to gauge the resiliency of the banking system to adverse scenarios.

\(^4\) See Til Schuermann’s opinion in the WSJ: http://online.wsj.com/news/articles/SB10001424127887324532004578362543899602754
EC is generally thought of as the difference between a VaR measure, or some extreme loss at some confidence level (e.g., a high quantile of a loss distribution), and an expected loss ("EL") measure, the latter being generally thought of as some likely measure of loss over some time horizon (e.g., an allowance for loan losses for the coming year amount set aside by a bank.) In Figure 1.3, reproduced from Jacobs (2013), we present a stylized representation of a loss distribution, and the associated EL and VaR measures.

The use of stress testing to quantify EC hinges on our definition of UL. While it is commonly thought that CE should cover EL, it may be the case that UL may not only be unexpected, but also not credible, as it is a purely statistical concept. Therefore, some argue that results of a ST should be used for EC purposes in lieu of UL. However, this practice is rare, as we usually do not have probability distributions associated with stress events, and historical practice has indicated the presence of fat-tails. Nevertheless, ST can be, and commonly has been, used to challenge the adequacy of RC or EC, and as an input into the derivation of a buffer for losses exceeding the VaR, especially for new products or portfolios.

ST has an advantage over EC in that it can often better address the risk aggregation problem – that is, the existence of correlations amongst different risk types, which can be in many cases large and cannot be ignored. As different risks may be modeled very differently, it is challenging to aggregate these into an EC measure. An advantage to ST in determining capital is that it can easily aggregate different risk types (e.g., credit, market & operational), which is problematic under standard EC methodologies (e.g., different horizons and confidence levels for market vs. credit risk). In Figure 1.4, we again reproduce a figure from Inanoglu and Jacobs (2009), the pairwise
correlations for a composite of the top 200 banks for 5 risk types (credit, market, liquidity, operational and interest rate risk), as proxied for by the FFIEC Call Report data. This is evidence that powerful long-run dependencies exist across risk types. Even more compelling is that such dependencies between risk types are accentuated during periods of stress. Embrechts et al (2001) and Frey et al (2003) provide detailed discussions of correlation and dependency modeling in risk management and various caveats with respect that discipline.

Apart from risk measurement or quantification, ST can be a risk management tool, to be used in several ways when analyzing portfolio composition and resilience with respect to disturbances. ST can help to identify potential uncertainties and locate the portfolio vulnerabilities, such as incurred but not realized losses in value, or weaknesses in structures that have not been tested.

ST can also aid in analyzing the effects of new complex structures and credit products for which we may have a limited understanding. ST can also guide discussions on unfavorable developments, like crises and abnormal market conditions, which may be very rare, but cannot be excluded from consideration. Finally, ST can be instrumental in monitoring important sub-portfolios exhibiting large exposures or extreme vulnerability to changes in market conditions.

Quantification of ST appears, and can be deployed, across several aspects of risk management with respect to extreme losses. First, ST can be used to establish or test risk buffers. Furthermore, ST is a tool for helping to determine the risk capacity of a financial institution. Another use of ST is in setting sub-portfolio limits, especially in low-default situations. ST can also be deployed to inform risk policy, tolerance and appetite. Moreover, ST can provide the impetus for actions necessary to reduce the risk of extreme losses and hence EC, and mitigate the vulnerability to important risk-relevant effects. ST is also potentially a means to test portfolio diversification by introducing (implicit) correlations. Finally, ST can help us to question a bank’s attitude towards risk.

This paper shall proceed as follows. Section 2 considers supervisory developments in ST since the financial crisis. Section 3 reviews the available literature on ST. Section 4 proposes a Bayesian methodology for ST and for quantifying a model uncertainty buffer around a stressed loss estimate. Section 5 presents the empirical implementation, the data description, a discussion of the estimation results and their implications. Section 6 concludes the study and provides directions for future avenues of research.

2 Supervisory Developments in Stress Testing

All regulatory capital models (“RCMs”) and bank internal economic capital models (“ECMs”) have the objective of assessing the amount of capital resources and liquidity required by a financial institution to support its risk taking activities. This is contrasted with available capital and liquidity resources, which may differ from what either the bank (through ECMs) or the supervisor (through RCMs) believe to be required. We can further partition the assessment process into a consideration of capital versus liquidity resources, corresponding to right and left sides of the balance sheet (i.e., net worth versus the share of “liquid” assets), respectively. In the best case
scenario, not only do supervisory and bank models result in similar outputs, but also both do not produce outputs that far exceed the regulatory floor.

It is well known that prior to the financial crisis, the “great failures” (e.g., Lehman, Bear Stearns, Washington Mutual, Freddie Mac and Fannie Mae) were well-capitalized according to the standards across a wide span of regulators (e.g. Fed, SEC, OCC, OFHEO). Another commonality included, in some manner (either directly or through securitization) a general exposure to residential real estate. Further, it is widely believed that the internal risk models of these institutions were not wildly out of line with those of the regulators (Schuermann, 2013). We learned through these unanticipated failures that the answer to the question of how much capital an institution needs to avoid failure was not satisfactory. Granted, by construction RCMs and ECMs accept a non-zero probability of default according to the risk aversion of the institution or the supervisor, but the utter failure of these constructs to even come close to projecting the perils that these institutions faced was a great motivator for considering alternative tools to assess capital adequacy, such as the ST discipline.

Various papers have laid out the reasons why ST has become such a dominant tool for regulators (Jacobs, 2013; Schuermann, 2013), including rationales for its utility, outlines for its execution, as well as guidelines and opinions on disseminating the output under various conditions. It has been argued previously (and we will continue to build upon this line of reasoning) that a viable ST program can, in a credible manner, quantify a gap in required capital, as well as means of filling that gap. We would extend this construct by adding that there needs to be a means of measuring the uncertainty inherent in these estimates, which transcends historical data, and stems from two sources. First, we have to deal with prior expectations or non-data knowledge, which from the point of view of supervisors may stem from private knowledge about the banks under their care; and with respect to an institution, this prior may reflect the expectations with respect to what the supervisor may require (e.g., in developing models for stress scenarios, banks often will use previous supervisory scenarios as input into the training data). Second, there are inherent uncertainties in this process, either sampling error arising from calibration to historical data, or error in anticipating supervisory scenarios.

Schuermann (2013) highlights the 2009 U.S. ST exercise, the Supervisory Capital Assessment Program (“SCAP”) as an informative model. In that period there was incredible angst amongst investors over the viability of the U.S. financial system, given the looming and credible threat of massive dilution stemming from government action. The concept underlying the application of a macro-prudential ST was that a bright line, delineating failure or survival under a credibly severe systematic scenario, would convince investors that future dilution with respect to passing institutions is a remote state of the world⁵. This exercise covered 19 banks in the U.S., having book value of assets greater than $100B (comprising approximately two-thirds the total in the system) as of the year-end 2008. The SCAP resulted in 10 of those banks having to raise a total of $75B ($77B) in capital (Tier 1 common equity) in a six month period, and no use of the CAP.

⁵ Further, in the case where institutions could not get the backing of investors to help them become well-capitalized, the U.S. Treasury established the Capital Assistance Program (“CAP”), which functioned as a backstop for capital requirements. Note that the perception was that U.S. Treasury was a sufficiently credible debt issuer that the CAP promise was itself credible.
Clark and Ryu (2013) note that CCAR was initially planned in 2010 and rolled out in 2011. It initially covered the 19 banks covered under SCAP, but as they document, a rule in November 2011 required all banks above $50 billion in assets to adhere to the CCAR regime. The CCAR regime includes *Dodd-Frank Act Stress Tests* (“DFAST”), the sole difference between CCAR and DFAST being that DFAST uses a homogenous set of capital actions on the part of the banks, while CCAR takes banks’ planning distribution of capital into account when calculating capital ratios. The authors further document that the total increase in capital in this exercise, as measured by Tier 1 common equity, was about $400 Billion. Final the authors highlight that ST is a regime that allows regulators to not only set a quantitative hurdle for capital that banks must reach, but also to make qualitative assessments of key inputs into the ST process, such as data integrity, governance, and reliability of the models.

The outcome of the SCAP was rather different from *Committee of European Bank Supervisors* (“CEBS”) stress tests in 2010 and 2011, which coincided with the sovereign debt crisis that hit the periphery of the Euro-zone. In 2010, the ECBS stressed a total of 91 banks, as with the SCAP covering about two-thirds of assets and one-half of banks per participating jurisdiction. There are several differences with respect to the SCAP worth noting. First, the CEBS exercise stressed the values of sovereign bonds held in trading books, but neglected to address that banking books where in fact the majority of the exposures, resulting in a mild requirement of just under $5B in additional capital. Second, in contrast to the SCAP, the CEBS ST level of disclosure was far less granular, with loss rates reported for only two broad segments (retail vs. corporate) as opposed to major asset classes (e.g., first-lien mortgages, credit cards, commercial real estate, etc.) The 2011 *European Banker’s Association* (“EBA”) exercise, covering 90 institutions in 21 jurisdictions, bore many similarities to the 2011 EBA tests, with only 8 banks required to raise about as much capital in dollar terms as the previous exercise. However, a key difference was the more granular disclosure requirements, such as breakdowns of loss rates by not only major asset class but also by geography, as well availability to the public in a user-friendly form that admitted the application of analysts’ assumptions. In a similarity to 2010 exercise, in which the CEBS test did not ameliorate nervousness about the Irish banks, is that the 2011 EBA version similarly did not ease concerns about the Spanish banking system, as while 5 of 25 passed there was no additional capital required.

3 Review of the Literature in Stress Testing

Since the dawn of modern risk management in the 1990s, ST has been a tool used to address the basic question of how exposures or positions behave under adverse conditions. Traditionally this form of ST has been in the domain of *sensitivity analysis* (e.g., shocks to spreads, prices, volatilities, etc.) or *historical scenario analysis* (e.g., historical episodes such as Black Monday 1987 or the post-Lehman bankruptcy period; or hypothetical situations such as modern version of the Great Depression or stagflation). These analyses are particularly suited to market risk, where data are plentiful, but for other risk types in data-scarce environments (e.g., operational, credit, reputational or business risk) there is a greater reliance on *hypothetical scenario analysis* (e.g., natural disasters, computer fraud, litigation events, etc.).
The first mention of ST in supervisory guidance is in the 1995 Market Risk Amendment of the 1988 Basel I Accord, having a separate section and constituting a requirement for regulatory approval of internal models. Around the same time, the publication of RiskMetrics (1994) marked risk management as a separate technical discipline, and therein all of the above mentioned types of ST are referenced. Jorion (1996), the seminal handbook on VaR, also had a part devoted to the topic of ST. Kupiec (1999) and Berkowitz (2000) provided detailed discussions of VaR-based ST as found largely in the trading and treasury functions. The Committee on Global Financial Systems (“CGFS”) conducted a survey on stress testing in 2000 (CGFS, 2000) that had similar findings. Mosser, Fender, and Gibson (2001) highlighted that the majority of the ST exercises performed to date were shocks to market observables based upon historical events, which have the advantage of being well-defined and easy to understand, especially when dealing with the trading book constituted of marketable asset classes.

However, in the case of the banking book (e.g., corporate / C&I or consumer loans), this approach does not carry over very well. Therefore ST with respect to credit risk has evolved later and as a separate discipline in the domain of credit portfolio modeling. However, even in the seminal example of CreditMetrics (JP Morgan, 1997) and CreditRisk+ (Wilde, 1997), ST was not a component of such models. Koyluoglu and Hickman (1998) demonstrated the commonality of all such credit portfolio models, a correspondence between the state of the economy and the credit loss distribution, and therefore that this framework is naturally amenable to ST. In this spirit Bangia et al. (2002) build upon the CreditMetrics framework through macroeconomic ST on credit portfolios using credit migration matrices. Foglia (2009) surveys of the then extant literature on ST for credit risk. Rebonato (2010) argues for a Bayesian approach to ST, having the capability to cohesively incorporate expert knowledge model design, utilizing causal networks.

ST supervisory requirements with respect to the banking book were rather undeveloped prior to the crisis, although it was rather prescriptive in other domains, examples including the Joint Policy Statement on Interest Rate Risk (SR 96-13), guidance on counterparty credit risk (SR 99-03), as well as country risk management (SR 02-05).

Jacobs (2013) surveyed practices and supervisory expectations for ST in a credit risk framework, and presented simple examples of a ratings migration based approach, using the CreditMetrics framework and loss data from the regulatory Y9 reports in conjunction with Federal Reserve scenarios. Jacobs et al (2015) propose a methodology for coherently incorporating expert opinion into the ST modeling process, through the application of a Bayesian model, which can formally incorporate exogenous scenarios and also quantify the uncertainty in model output that results from stochastic model inputs. This approach was illustrated through estimating a Bayesian model for credit loss using Fed Y9 data, with prior distributions formed from the supervisory mandated macroeconomic scenarios.

4 Review of the Literature in Risk Aggregation

A modern diversified financial institution, engaging in a broad set of activities (e.g., banking, brokerage, insurance or wealth management) is faced with the task of measuring and managing
risk across all of these. It is the case that just about any large, internationally active financial institution is involved in at least two of these activities, and many of these are a conglomeration of entities under common control. Therefore, we have the necessity of a framework in which disparate risk types can be aggregated. However, this is challenging, due to the varied distributional properties of the risks6. It is accepted that regardless of which sectors a financial institution focuses upon, they at least manage credit, market and operational risk. The corresponding supervisory developments - the Market Risk Amendment to Basel 1, Advanced IRB to credit risk under Basel 2 and the AMA approach for operational risk (BCBS 1988, 1996, 2004) – have given added impetus for almost all major financial institutions to quantify these risks in a coherent way. Furthermore, regulation is evolving toward even more comprehensive standards, such as the Basel Pillar II Internal Capital Adequacy Assessment Process (ICAAP) (BCBS, 2009). In light of this, institutions may have to quantify and integrate other risk types into their capital processes, such as liquidity, funding or interest income risk. A quantitative component of such an ICAAP may be a risk aggregation framework to estimate economic capital (EC)7 or stressed EC.

The central technical and conceptual challenge to risk aggregation lies in the diversity of distributional properties across risk types, including different portfolio segments. In the case of market risk, a long literature in financial risk management has demonstrated that portfolio value distributions may be adequately approximated in a Gaussian, due to the symmetry and thin tails that tend to hold at an aggregate level in spite of non-normalities at the asset return level (Jorion, 1996).8 In contrast, credit loss distributions are characterized by pronounced asymmetric and long-tailed distributions, a consequence of phenomena such as lending concentrations or credit contagion, giving rise to infrequent and very large losses. This feature is magnified for operational losses, where the challenge is to model rare and severe losses due to exogenous events, such failures of systems or processes, litigation or fraud (e.g., the Enron or Worldcom debacles, or more recently Societe Generale).9 While the literature abounds with examples of these three (Crouhy et al., 2001), little attention has been paid to the even broader range of risks faced by a large financial institution (Kuritzkes et al., 2003), including liquidity and asset / liability mismatch risk. In the case of credit portfolio segments, which are often modeled independently for ST to down applications yet may have very different distributions over time and cross-sectionally there is an analogous problem to be solved.

Risk management as a discipline in its own right, distinct from either general finance or financial institutions, is a relatively recent phenomenon. It follows that the risk aggregation question has only recently come into focus. To this end, the method of copulas, which follows from a general result of mathematical statistics due to Sklar (1956), readily found an application. This technique allows the combination of arbitrary marginal risk distributions into a joint distribution, while preserving a non-normal correlation structure. Among the early academics to introduce this methodology is Embrechts et al. (2001, 2002). This was applied to credit risk management and

6 This is not unique to enterprise risk measurement for financial conglomerates, as it appears in several areas of finance, including corporate finance (e.g., financial management), investments (e.g., portfolio choice) as well as option pricing (i.e., hedging).

7 However, in the U.S. supervisors are not requiring all institutions to model EC, only the largest and most systemically important (BCBS, 2009).

8 Even in this context, there are anomalies such as the stock market crash of 1987, which is an event which should never have occurred under the normality of equity returns.

9 However, this does not cover catastrophic losses, e.g., the terrorist attacks of 9/11.
credit derivatives by Li (2000). The notion of copulas as a generalization of dependence according to linear correlations is used as a motivation for applying the technique to understanding tail events in Frey and McNeil (2001). This treatment of tail dependence contrasts to Poon et al (2004), who instead use a data intensive multivariate extension of extreme value theory, which requires observations of joint tail events.

5 A Time Series VAR Methodology for Modeling for the Correlation Amongst Portfolio Segments

Let \(Y_t = (Y_{t1},...,Y_{tk})^T \) be a \(k \)-dimensional vector valued time series, the output variables of interest, in our application with the entries representing some loss measure in a particular segment, that may be influenced by a set of observable input variables denoted by \(X_t = (X_{t1},...,X_{tr})^T \), an \(r \)-dimensional vector valued time series also referred as exogenous variables, and in our context representing a set of macroeconomic factors. We say that that \(Y_t \) follows a multiple transfer function process if we can write it in the following form:

\[
Y_t = \sum_{j=0}^{\infty} \Psi_j^* X_{t-j} + N_t
\]

(5.1)

Where \(\Psi_j^* \) are a sequence of \(k \times r \) dimensional matrices and \(N_t \) is a \(k \)-dimensional vector of noise terms which follow an stationary vector autoregressive-moving average process, denoted by \(\text{VARMA}(p,q,s) \):

\[
\Phi(B)N_t = \Theta(B)\varepsilon_t
\]

(5.2)

Where \(\Phi(B) = I_r - \sum_{j=1}^{p} \Phi_j B^j \) is the autoregressive lag polynomial, \(\Theta(B) = I_r - \sum_{j=1}^{q} \Theta_j B^j \) is the autoregressive lag polynomial and \(B \) is the back-shift operator that satisfies \(B^i X_t = X_{t-i} \) for any process \(\{X_t\} \). It is common to assume that the input process \(\{X_t\} \) is generated independently of the noise process \(\{N_t\} \). In fact, the exogenous variables \(\{X_t\} \) can represent both stochastic and non-stochastic (deterministic) variables, examples being sinusoidal seasonal (periodic) functions of time, used to represent the seasonal fluctuations in the output process \(\{Y_t\} \), or intervention analysis modeling in which a simple step (or pulse indicator) function taking the values of 0 or 1 to indicate the effect of output due to unusual intervention events in the system.
Now let us assume that the transfer function operator can be represented by a *rational factorization* of the form $\Psi^*(B) = \sum_{j=0}^{\infty} \Psi^j B^j = \Phi^{-1}(B) \Theta^*(B)$, where $\Theta^*(B) = \sum_{j=0}^{s} \Theta^j B^j$ is of order s and Θ^j are $k \times r$ matrices. For convenience, we assume that the factors $\Phi(B)$ and $\Theta^j \in R^{k \times r}$ are $k \times r$ matrices. Without loss of generality, we assume that the factor $\Phi(B) = I_s - \sum_{j=1}^{p} \Phi_j B^j$ is the same as the AR factor in the model for the noise process N_t. This gives rise to the VARMAX (p,q,s) representation, where X stands for the sequence of exogenous (or input) vectors:

$$Y_t - \sum_{j=1}^{p} \Phi_j Y_{t-j} = \sum_{j=1}^{s} \Theta_j X_{t-j} + \varepsilon_t - \sum_{j=1}^{q} \Theta^*_j \varepsilon_{t-j} \quad (5.3)$$

Note that the VARMAX model (5.3) could be written in various equivalent forms, involving a lower triangular coefficient matrix for Y_t at lag zero, or a leading coefficient matrix for ε_t at lag zero, or even a more general form that contains a leading (non-singular) coefficient matrix for Y_t at lag zero that reflects instantaneous links amongst the output variables that are motivated by theoretical considerations (provided that the proper identifiability conditions are satisfied – see Hannan (1971) or Kohn (1979) for further details). In the econometrics setting, such a model form is usually referred to as a *dynamic simultaneous equations model* or a *dynamic structural equation model* and the related model in the form of equation (5.3), obtained by multiplying the dynamic simultaneous equations model form by the inverse of the lag 0 coefficient matrix, is referred to as the *reduced form model*.

The ARMAX model (5.3) is said to be stable if the roots of $\det\{\Phi(B)\} = 0$ are all greater than unity in absolute value. In that case, if both the input $\{X_t\}$ and the noise $\{N_t\}$ processes are stationary, then so is the output process $\{Y_t\}$ having the following convergent representation:

10 In addition, (5.3) has the state space representation of the form (Hanan and Deistler, 1988):

$$Z_t = \Phi Z_{t-1} + BX_{t-1} + a_t$$

$$Y_t = HZ_t + FX_t + N_t$$
\[Y_j = \sum_{j=0}^{\infty} \Psi_j X_{t-j} + \sum_{j=0}^{\infty} \Psi_j \epsilon_{t-j} \] (5.4)

Where \(\Psi(B) = \sum_{j=0}^{\infty} \Psi_j B^j = \Phi^{-1}(B) \Theta(B) \) and \(\Psi^*(B) = \sum_{j=0}^{\infty} \Psi^*_j B^j = \Phi^{-1}(B) \Theta^*(B) \). The transition matrices \(\Psi_j^* \) of the transfer function \(\Psi^*(B) \) represent the partial effects that changes in the exogenous (or input variables; macroeconomic variables or scenarios in our application) variables have on the output variables \(Y_t \) at various time lags, and are sometimes called response matrices. The long-run effects or total gains of the dynamic system (5.4) is given by the elements of the matrix:

\[G = \Psi^*(1) = \sum_{j=0}^{\infty} \Psi^*_j \] (5.5)

And the entry \(G_{i,j} \) represents the long-run (or equilibrium) change in the \(i \)-th output variable that occurs when a unit change in the \(j \)-th exogenous variable occurs and is held fixed at some starting point in time, with all other exogenous variables held constant. In econometric terms, the elements of the matrices \(\Psi_j^* \) are referred to as dynamic multipliers at lag \(j \), and the elements of \(G \) are referred to as total multipliers.

In this study we consider a vector autoregressive model with exogenous variables (“VARX”), denoted by \(\text{VARX}(p,s) \), which restricts the MA terms beyond lag zero to be zero, or \(\Theta^*_j = 0_{k \times k} \quad j > 0 \):

\[Y_t - \sum_{j=1}^{p} \Phi_j Y_{t-j} = \sum_{j=1}^{s} \Theta_j X_{t-j} + \epsilon_t \] (5.6)

The rationale for this restriction is three-fold. First, in no cases were MA terms significant in the model estimations, so that the data simply does not support a VARMA representation. Second, the VARX model avails us of the very convenient DSE package in R, which has computational and analytical advantages. Finally, the VARX framework is more practical and intuitive than the more elaborate VARMAX model, and allows for superior communication of results to practitioners.

6 Empirical Implementation

As part of the Federal Reserve’s CCAR exercise, U.S. domiciled top-tier BHCs are required to submit comprehensive capital plans, including pro forma capital analyses, based on at least one BHC defined adverse scenario. The adverse scenario is described by quarterly trajectories for key
macroeconomic variables (MVs) over the next nine quarters or longer, to estimate loss allowances. In addition, the Federal Reserve generates its own supervisory stress scenarios, so that firms are expected to apply both BHC and supervisory stress scenarios to all exposures, in order to estimate potential losses under stressed operating conditions. Separately, firms with significant trading activity are asked to estimate a one-time potential trading-related market and counterparty credit loss shock under their own BHC scenarios, and a market risk stress scenario provided by the supervisors. In addition, large custodian banks are asked to estimate a potential default of their largest counterparty. In the case of the supervisory stress scenarios, the Federal Reserve provides firms with global market shock components that are one-time, hypothetical shocks to a large set of risk factors. For the last two CCAR exercises, these shocks involved large and sudden changes in asset prices, rates, and CDS spreads that mirrored the severe market conditions in the second half of 2008.

Since CCAR is a comprehensive assessment of a firm's capital plan, the BHCs are asked to conduct an assessment of the expected uses and sources of capital over a planning horizon. In the 2009 SCAP, firms were asked to submit stress losses over the next two years, on a yearly basis. Since then, the planning horizon has changed to nine quarters. For the last three CCAR exercises, BHCs are asked to submit their pro forma, post-stress capital projections in their capital plan beginning with data as of September 30, spanning the nine-quarter planning horizon. The projections begin in the fourth quarter of the current year and conclude at the end of the fourth quarter two years forward. Hence, for defining BHC stress scenarios, firms are asked to project the movements of key MVs over the planning horizon of nine quarters. Our analysis on using the macroeconomic stress scenarios to inform historical analysis is based on the collections movements of the MVs over these nine quarter periods. As for determining the severity of the global market shock components for trading and counterparty credit losses, it will not be discussed in this paper, because it is a one-time shock and the evaluation will be on the movements of the market risk factors rather the MVs. First, in the 2011 CCAR, the Federal Reserve defined the stress supervisory scenario using nine MVs:

- Real GDP (“RGDP”)
- Consumer Price Index (“CPI”)
- Real Disposable Personal Income (“RDPI”)
- Unemployment Rate (“UNEMP”)
- Three-month Treasury Bill Rate (“3MTBR”)
- Ten-year Treasury Bond Rate (“10YTBR”)
- BBB Corporate Rate (“BBBCR”)
- Dow Jones Index (“DJI”)
- National House Price Index (“HPI”)

Subsequently, In CCAR 2012, the number of MVs that defined the supervisory stress scenario increased to 14. In addition to the original nine variables, the added variables were:

- Real GDP Growth (“RGDPG”)
- Nominal Disposable Income Growth (“NDPIG”)
- Mortgage Rate (“MR”)
- CBOE’s Market Volatility Index (“VIX”)
- Commercial Real Estate Price Index (“CREPI”)

16
Additionally, there is another set of 12 international macroeconomic variables, three macroeconomic variables and four countries / country blocks, included in the supervisory stress scenario. As for CCAR 2013, the Federal Reserve System used the same set of variables to define the supervisory adverse scenario as in 2012. For the purposes of this research, let us consider the supervisory severely adverse scenario in 2014, focusing on 5 of the 9 most commonly used national Fed CCAR MVs:

- Year-on-Year Change in Real Gross Domestic Product ("RGDPYY")
- Unemployment Rate ("UNEMP")
- Dow Jones Equity Price Index ("DJI")
- National Housing Price Index ("HPI")
- Commercial Real Estate Price Index ("CREPI")

We model aggregate bank gross chargeoffs ("ABCO") from the Fed Y9 report as a measure of loss, focusing on 5 segments:

- Residential Real Estate ("RRE")
- Commercial Real Estate ("CRE")
- Consumer Credit ("CC")
- Commercial and Industrial ("CNI")

This data are summarized in Table 5.1 and in Figures 5.1 through 5.9. Starting with summary statistics of the output loss variables, RRE has a mean level (percent change) of 78 bps (7.19%), with some significant upward skew as the median level (percent change) is 34 bps (0.00%), varying widely in level (percent change) from 7 bps (-63.76%) to 277 bps (181.25%), a high standard deviation with respect to the mean in level (percent change) of 81 bps (41.72%). CRE has a mean level (percent change) of 66 bps (11.30%), with some significant upward skew as the median level (percent change) is 15 bps (-8.55%), varying widely in level (percent change) from 1 bps (-83.33%) to 294 bps (400.00%), a high standard deviation with respect to the mean in level (percent change) of 66 bps (69.51%). CC has a mean level (percent change) of 316 bps (0.26%), with some significant upward skew as the median level (percent change) is 277 bps (0.00%), varying widely in level (percent change) from 175 bps (-42.24%) to 670 bps (28.03%), a high standard deviation with respect to the mean in level (percent change) of 121 bps (11.80%). Finally for outputs, CNI has a mean level (percent change) of 93 bps (-1.06%), with some significant upward skew as the median level (percent change) is 71 bps (-6.08%), varying widely in level (percent change) from 19 bps (-28.26%) to 252 bps (60.00%), a high standard deviation with respect to the mean in level (percent change) of 689 bps (20.37%).
Table 5.1: Summary Statistics and Correlations of Historical Y0 Losses vs. Fed Macroeconomic Variables

<table>
<thead>
<tr>
<th>Fed Macroeconomic Variables</th>
<th>Historical Data</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer price index</td>
<td>3.2%</td>
<td>0.8406</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>7.3%</td>
<td>-0.9183</td>
</tr>
<tr>
<td>Real gross domestic product</td>
<td>4.5%</td>
<td>0.6991</td>
</tr>
<tr>
<td>Commercial and industrial</td>
<td>6.7%</td>
<td>0.8672</td>
</tr>
<tr>
<td>Commercial real estate</td>
<td>8.9%</td>
<td>0.7489</td>
</tr>
<tr>
<td>Residential real estate</td>
<td>2.3%</td>
<td>0.7849</td>
</tr>
</tbody>
</table>

Note: The table includes summary statistics and correlations for various economic indicators related to historical Y0 losses. The data covers a range of economic scenarios, including consumer price index, unemployment rate, real gross domestic product, commercial and industrial sectors, commercial real estate, and residential real estate.
Moving on to summary statistics the input macroeconomic loss driver variables, RGDPYY has a mean level (percent change) of 0.75 bps (7.27%), with some significant upward skew as the median level (percent change) is -1 bps (-10.00%), varying widely in level (percent change) from 7 bps (-630.00%) to 38 bps (670.00%), a high standard deviation with respect to the mean in level (percent change) of 7 bps (7.27%). UNEMP has a mean level (percent change) of 6.60% (0.75%), with some significant upward skew as the median level (percent change) is 5.90% (-1.28%), varying widely in level (percent change) from 4.20% (-7.46%) to 9.9% (38.10%), a high standard deviation with respect to the mean in level (percent change) of 1.74% (7.28%). DJI has a mean level (percent change) of 1.35e+4 (1.63%), with some significant upward (downward) skew as the median level (percent change) is 1.30e+4 (1.74%), varying widely in level (percent change) from 7.77e+3 (-23.42%) to 2.15e+4 (16.14%), a high standard deviation with respect to the mean in level (percent change) of 3.69e+3 (8.30%). HPI has a mean level (percent change) of 159.09 (0.85%), with some significant upward skew as the median level (percent change) is 157.3 (0.65%), varying widely in level (percent change) from 113.20 (-5.15%) to 198.70 (10.78%), a high standard deviation with respect to the mean in level (percent change) of 198.70 (10.78%). Finally for inputs, CREPI has a mean level (percent change) of 193.82 (1.15%), with some significant upward (downward) skew as the median level (percent change) is 189.40 (1.46%), varying widely in level (percent change) from 135.80 (-14.55%) to 251.50 (9.81%), a high standard deviation with respect to the mean in level (percent change) of 34.99 (4.38%).

In general all four output loss variables are highly correlated with each other, and more so in levels than in percent changes, motivating the multiple equation approach. RRE and CRE are nearly colinear (reasonably positively correlated), having a correlation coefficient of 95.9% (23.5%) for levels (percent changes). RRE and CC are, having a correlation coefficient of 81.0% (13.2%) for levels (percent changes). RRE and CNI are highly positively correlated (mildly positively correlated), having a correlation coefficient of 52.3% (19.7%) for levels (percent changes). CC and CRE are nearly colinear (marginally negatively correlated), having a correlation coefficient of 90.2% (-13.3%) for levels (percent changes). CRE and CNI are highly positively correlated (mildly positively correlated), having a correlation coefficient of 62.5% (32.2%) for levels (percent changes). Finally, CC and CNI are highly positively correlated (mildly positively correlated), having a correlation coefficient of 77.8% (38.6%) for levels (percent changes).

In general all five input macroeconomic variables are either highly positively or negatively correlated with each other (although there are some notable counter-examples), and more so in terms of magnitude in levels as compared to percent changes, motivating the multiple equation approach. A case of a small relationship in either level or percent change is RGDPYY and UEMP, having respective correlation coefficients of -7.68% and 9.11%, respectively. RGDPYY and DJI are reasonably positively correlated (nearly uncorrelated), having a correlation coefficient of 21.6% (-0.88%) for levels (percent changes). RGDPYY and HPI are reasonably positively correlated (nearly uncorrelated), having a correlation coefficient of 14.6% (2.29%) for levels (percent changes). RGDPYY and CREPI are marginally negatively correlated (marginally positively
Figure 5.1: Time Series and Kernel Density Plots of Residential Real Estate Loans - Gross Chargeoff Rate Level and Percent Change

![Residential Real Estate Loans Gross Chargeoff Rate Plot]

Figure 5.2: Time Series and Kernel Density Plots of Commercial Real Estate Loans - Gross Chargeoff Rate Level and Percent Change

![Commercial Real Estate Loans Gross Chargeoff Rate Plot]
correlated), having a correlation coefficient of -18.2% (20.5%) for levels (percent changes). UNEMP and DJI are marginally negatively correlated (reasonably negatively correlated), having a correlation coefficient of -10.1% (-38.7%) for levels (percent changes). UNEMP and HPI are highly negatively correlated (nearly uncorrelated), having a correlation coefficient of -59.7% (-2.56%) for levels (percent changes). UNEMP and CREPI are reasonably negatively correlated (reasonably negatively correlated), having a correlation coefficient of -30.7% (-43.3%) for levels (percent changes). DJI and HPI are reasonably positively correlated (marginally positively correlated), having a correlation coefficient of 45.6% (18.9%) for levels (percent changes). DJI and CREPI are reasonably positively correlated (marginally positively correlated), having a correlation coefficient of 74.6% (-6.01%) for levels (percent changes). Finally, HPI and CREPI are highly positively correlated (marginally positively correlated), having a correlation coefficient of 66.6% (16.4%) for levels (percent changes).

Finally for the correlation analysis, we consider the correlations between the macroeconomic input variables and the loss output variables. RRE is uncorrelated (uncorrelated) with RGDPYY in levels (percent changes), having a correlation coefficient of 0.19% (-1.17%). RRE is nearly colinear (reasonably positively correlated) with UNEMP in levels (percent changes), having a correlation coefficient of 92.3% (30.2%). RRE is nearly marginally positively (reasonably negatively) correlated with DJI in levels (percent changes), having a correlation coefficient of 5.36% (-29.0%). RRE is nearly reasonably negatively (somewhat negatively) correlated with HPI in levels (percent changes), having a correlation coefficient of -49.6% (-18.8%). RRE is nearly somewhat negatively (somewhat negatively) correlated with CREPI in levels (percent changes), having a correlation coefficient of -19.5% (-19.9%). CRE is uncorrelated (reasonably negatively correlated) with RGDPYY in levels (percent changes), having a correlation coefficient of 1.14% (-18.6%). CRE is nearly colinear (reasonably positively correlated) with UNEMP in levels (percent changes), having a correlation coefficient of 89.3% (30.2%). CRE is nearly marginally negatively (reasonably negatively) correlated with DJI in levels (percent changes), having a correlation coefficient of -5.289% (-19.7%). CRE is nearly reasonably negatively (reasonably negatively) correlated with HPI in levels (percent changes), having a correlation coefficient of -80.1% (-32.7%). CRE is nearly reasonably negatively (marginally negatively) correlated with CREPI in levels (percent changes), having a correlation coefficient of -28.0% (-4.12%). CC is uncorrelated (reasonably positively correlated) with RGDPYY in levels (percent changes), having a correlation coefficient of 2.59% (8.46%). CC is highly positively (reasonably positively correlated) with UNEMP in levels (percent changes), having a correlation coefficient of 76.45% (24.1%). CC is nearly reasonably negatively (marginally negatively) correlated with DJI in levels (percent changes), having a correlation coefficient of -31.0% (-9.18%). CC is nearly highly negatively (reasonably negatively) correlated with HPI in levels (percent changes), having a correlation coefficient of -51.1% (-17.2%). CC is nearly highly negatively (marginally negatively) correlated with CREPI in levels (percent changes), having a correlation coefficient of -47.9% (-11.1%).
Figure 5.3: Time Series and Kernel Density Plots of Consumer Loans - Gross Chargeoff Rate Level and Percent Change

Figure 5.4: Time Series and Kernel Density Plots of Commercial & Industrial Loans - Gross Chargeoff Rate Level and Percent Change
Figure 5.5: Time Series and Kernel Density Plots of Real GDP Growth Level and Percent Change

Figure 5.6: Time Series and Kernel Density Plots of the Unemployment Rate Level and Percent Change
Figure 5.7: Time Series and Kernel Density Plots of the Dow Jones Equity Index Level and Percent Change

Figure 5.8: Time Series and Kernel Density Plots of the U.S. National Residential Housing Price Index Level and Percent Change
Figure 5.9: Time Series and Kernel Density Plots of the U.S. Commercial Real Estate Price Index - Price Index Level and Percent Change

CNI is marginally positively correlated (marginally negatively correlated) with RGDPYY in levels (percent changes), having a correlation coefficient of 13.9% (-5.65%). CNI is highly positively (highly positively correlated) with UNEMP in levels (percent changes), having a correlation coefficient of 56.5% (44.7%). CNI is nearly highly negatively (reasonably negatively) correlated with DJI in levels (percent changes), having a correlation coefficient of -56.1% (-22.4%). CNI is nearly highly negatively (reasonably negatively) correlated with HPI in levels (percent changes), having a correlation coefficient of -72.4% (-29.3%). CNI is nearly highly negatively (marginally negatively) correlated with CREPI in levels (percent changes), having a correlation coefficient of -78.3% (-9.1%).

The estimation results are summarized in Table 5.2. The top panel tabulates the results of the VAR(1) estimation of a 4-equation system, while the bottom panel tabulates the results of the single equation AR(1) models for each portfolio segment separately. Before proceeding to discuss detailed results for each segment, we highlight the main conclusions of the analysis:

- The results of the estimation are broadly consistent across the VAR and AR models, but with a few notable differences (e.g., most segments exhibit significant but mild autocorrelation, and different subsets of the macro variables are significant across different segments)
• Across all 4 segments, according to the likelihood ratio statistic, we reject the hypothesis that the restrictions of the single equation AR models are justified

• The VAR models are generally more accurate according to standard measures of model fit with respect to each segment

• It is inconclusive whether the VAR or AR models are more or less conservative as measured by cumulative 9-quarter loss

First, we discuss the results for the RRE segment. In the VAR model the autoregressive term is significantly positive but small, a parameter estimate 0.1750, which is also significant but rather larger in the AR model having an estimate 0.2616. The cross autoregressive term on CRE is significantly positive in the VAR model but small, a parameter estimate 0.0819. The coefficient estimates of the macroeconomic sensitivities on UNEMP (HPI) are significant and positive (negative) for RRE in the VAR model, having values of 0.7628 (-1.0130), which are also significant in the AR model and of the same sign, albeit larger (larger in magnitude in the latter case with respective values of 0.8847 (-1.0727). According to the likelihood ratio test for the RRE segment, a value of 54.20 rejects the 35 parameter restrictions of the AR with respect to the VAR model at a very high level of confidence. The VAR model outperforms the AR model for the RRE segment according to the RMSE, SC and CPE measures with values of 0.1043, 0.4821 and -397.8% in the former as compared to 0.1089, 0.4373 and -977.0% in the latter. The VAR model is also more conservative than the AR model, having a 9 quarter cumulative loss of 59.2% in the former, versus 56.8% in the latter.

Second, we discuss the results for the CRE segment. In the VAR model the autoregressive term is significantly positive but small, a parameter estimate 0.1880, which is however insignificant and rather larger in the AR model having an estimate 0.1167. The cross autoregressive term on RRE is significantly positive in the VAR model and substantial, a parameter estimate 0.5986. The coefficient estimates of the macroeconomic sensitivities on UNEMP (DJI) are significant and positive (negative) for CRE in the VAR model, having values of 1.3966 (-0.8806), which are also significant in the AR model and of the same sign, albeit larger (smaller) in magnitude in the latter case with respective values of 1.7100 (-0.8716). Furthermore, in the AR model the macro-sensitivity on RGDPYY is significant, although of the incorrect sign, having a value of 0.0209. According to the likelihood ratio test for the CRE segment, a value of 82.08 rejects the 35 parameter restrictions of the AR with respect to the VAR model at a very high level of confidence. The VAR model outperforms the AR model for the CRE segment according to the RMSE, SC and CPE measures with values of 0.3808, 0.1826 and 83.0% in the former as compared to 0.3883, 0.1510 and -101.0% in the latter. However, the VAR model is also less conservative than the AR model, having a 9 quarter cumulative loss of 83.0% in the former, versus 110.0% in the latter.
Table 5.2: Vector Autoregressive vs. Single Equation Autoregressive Model Estimation Compared (Fed Macroeconomic Variables and Aggregate Y9 Bank Chargeoffs)

<table>
<thead>
<tr>
<th></th>
<th>Single Equation AR(1) Model</th>
<th>Multiple Vector AR(1) Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computed Cumulative Squared Error</td>
<td>-0.060</td>
<td>0.025</td>
</tr>
<tr>
<td>Residual Real Estate</td>
<td>2.170</td>
<td>2.470</td>
</tr>
<tr>
<td>Residual Commercial Consumer</td>
<td>2.180</td>
<td>2.470</td>
</tr>
<tr>
<td>Residual Commercial Real Estate</td>
<td>2.180</td>
<td>2.470</td>
</tr>
<tr>
<td>Residual Consumer, Commercial</td>
<td>2.170</td>
<td>2.470</td>
</tr>
<tr>
<td>P-values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computed Cumulative Squared Error</td>
<td>-0.060</td>
<td>0.025</td>
</tr>
<tr>
<td>Residual Real Estate</td>
<td>2.170</td>
<td>2.470</td>
</tr>
<tr>
<td>Residual Commercial Consumer</td>
<td>2.180</td>
<td>2.470</td>
</tr>
<tr>
<td>Residual Commercial Real Estate</td>
<td>2.180</td>
<td>2.470</td>
</tr>
<tr>
<td>Residual Consumer, Commercial</td>
<td>2.170</td>
<td>2.470</td>
</tr>
</tbody>
</table>
Next, we discuss the results for the CC segment. In the VAR model the autoregressive term is significantly positive reasonably large in magnitude, a parameter estimate 0.4437, which is also significant and rather larger in the AR model having an estimate 0.4080. The cross autoregressive term on CC is significantly positive in the VAR model and substantial, a parameter estimate 0.4437. The coefficient estimates of the macroeconomic sensitivities on 4 of the 5 drivers RGDPYY, UNEMP, HPI and DJI are significant for CC in the VAR model; having respective values of 0.040, 4.88, -13.32 and 2.47 – however note that the signs on RGDPYY and CREPI are counterintuitive. Similarly in the AR model for these variables, estimates are also significant and close in magnitude - having respective values of 0.0361, 5.27, -12.82 and 2.72 – and the signs on RGDPYY and CREPI are also counterintuitive. According to the likelihood ratio test for the CC segment, a value of 47.16 rejects the 35 parameter restrictions of the AR with respect to the VAR model at a very high level of confidence. The VAR model outperforms the AR model for the CC segment according to the RMSE, SC and CPE measures with values of 0.5565, 0.3709 and 94.1% in the former as compared to 0.5704, 0.3448 and 106.7% in the latter. Furthermore, the VAR model is also conservative than the AR model, having a 9 quarter cumulative loss of 273.1% in the former, versus 269.6 in the latter.

Finally, we discuss the results for the CNI segment. In the VAR model the autoregressive term is insignificantly positive but small, a parameter estimate 0.1386, and is also insignificantly positive but somewhat larger in size in the AR model having an estimate 0.1443. The cross autoregressive terms are all insignificant in the VAR model. The coefficient estimates of the macroeconomic sensitivities on RGDPYY are significant and negative for CNI in the VAR model, having a value of -0.1340, which is also significant in the AR model and of the same sign, albeit smaller in magnitude in the latter case with a respective value -0.1222. According to the likelihood ratio test for the CNI segment, a value of 17.61 fails to reject the 35 parameter restrictions of the AR with respect to the VAR model, having a large p-value and implying that for this segment the VAR model may not be statistically viable by this measure. The VAR model outperforms (underperforms) the AR model for the CNI segment according to the RMSE and SC (CPE) measures (measure) with values of 1.2512 and 0.0947 (-507.8%) in the former as compared to 0.1089 and 0.4373 (-507.0%) in the latter. The VAR model is also very slightly less conservative than the AR model, having a 9 quarter cumulative loss of -168.8% in the former, versus -168.1% in the latter.

In Figures 5.10 through 5.26 present the plots of actual vs. predicted losses, residual diagnostic and scenario forecast plots for each modeling segment in the VAR and in each single equation AR model. Through an examination of these plots, we can conclude that the VAR model performs better than the AR models in terms of forecast accuracy and quality of the residuals.
Figure 5.10: One Step Ahead Predictions versus Actual Values – Vector Autoregressive Model (Residential Mortgage, Commercial Real Estate, Consumer and C&I Loan Losses)

Figure 5.11: Residual Diagnostic Plots – Vector Autoregressive Model (Residential Mortgage, Commercial Real Estate, Consumer and C&I Loan Losses)
Figure 5.12: Residual Autocorrelation Function Plots – Vector Autoregressive Model (Residential Mortgage, Commercial Real Estate, Consumer and C&I Loan Losses)
Figure 5.13: Historical Values vs. Scenario Forecast Plots – Vector Autoregressive Model (Residential Mortgage, Commercial Real Estate, Consumer and C&I Loan Losses)

Figure 5.14: One Step Ahead Predictions versus Actual Values – Autoregressive Model (Residential Mortgage)
Figure 5.15: Residual Diagnostic Plots – Autoregressive Model (Residential Mortgage)

Figure 5.16: Residual Autocorrelation Function Plots – Autoregressive Model (Residential Mortgage)
Figure 5.17: Historical Values vs. Scenario Forecast Plots – Autoregressive Model (Residential Mortgage)

Figure 5.18: One Step Ahead Predictions versus Actual Values – Autoregressive Model (Commercial Real Estate)
Figure 5.19: Residual Diagnostic Plots – Autoregressive Model (Commercial Real Estate)

Figure 5.20: Residual Autocorrelation Function Plots – Autoregressive Model (Commercial Real Estate)
Figure 5.21: Historical Values vs. Scenario Forecast Plots – Autoregressive Model (Commercial Real Estate)

Figure 5.22: One Step Ahead Predictions versus Actual Values – Autoregressive Model (Consumer Loans)
Figure 5.23 Residual Diagnostic Plots – Autoregressive Model (Consumer Loans)

Figure 5.24: Residual Autocorrelation Function Plots – Autoregressive Model (Consumer Loans)
Figure 5.25: Historical Values vs. Scenario Forecast Plots – Autoregressive Model (Consumer Loans)

Figure 5.26: One Step Ahead Predictions versus Actual Values – Autoregressive Model (Commercial and Industrial Loans)
Figure 5.27 Residual Diagnostic Plots – Autoregressive Model (Commercial and Industrial Loans)

Figure 5.28: Residual Autocorrelation Function Plots – Autoregressive Model (Commercial and Industrial Loans)
6 Conclusion and Future Directions

We have considered the case of banks that model the risk of their portfolios using top-of-the-house modeling techniques. We have addressed an issue of how to incorporate the correlation of risks amongst the different segments. An approach to incorporate this consideration of dependency structure was proposed, and the bias that results from ignoring this aspect is quantified, through estimating a vector autoregressive (VAR) time series models for credit loss using Fed Y9 data. We found that the multiple equation VAR model outperforms the single equation autoregressive (AR) models according to various metrics across all modeling segments. The results of the estimation are broadly consistent across the VAR and AR models, but with a few notable differences (e.g., most segments exhibit significant but mild autocorrelation, and different subsets of the macro variables are significant across different segments). Across all 4 segments, according to the likelihood ratio statistic, we reject the hypothesis that the restrictions of the single equation AR models are justified. The VAR models are generally more accurate according to standard measures of model fit with respect to each segment. It is inconclusive whether the VAR or AR models are more or less conservative as measured by cumulative 9-quarter loss.

There are several directions in which this line of research could be extended, including but not limited to the following:

- More granular classes of credit risk models, such as ratings migration or PD / LGD scorecard / regression
- Alternative data-sets, for example bank or loan level data
- More general classes of regression model, such as logistic or semi-parametric
- Applications related to ST, such as RC or EC
7 References

Basel Committee on Banking Supervision (BCBS), 1988, Internal convergence of capital measurement and capital standards, Basel, Switzerland.

______, 1996, Amendment to the capital accord to incorporate market risks, Basel, Switzerland.

______, 2009, Range of practices and issues in economic capital frameworks, Basel, Switzerland.

Clark, T., and L. Ryu ,2013, “CCAR and Stress Testing as Complementary Supervisory Tools”, Board of Governors of the Federal Reserve Supervisory Staff Reports.

de Finetti, B ,1970a,b, Theory of Probability, Wiley, New York

Kohn, R., 1979, Asymptotic results for ARMAX structures, Econometrica 47, 1295–1304.

Sklar, A., 1956, Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de L’Université de Paris 8, 229-231.

